Напайки твердосплавные

3-й ЭТАП — НАПАЙКА ПЛАСТИНОК.

Этот этап является наиболее ответственным, так как при неправильном его проведении, во время работы резца, пластинки твердого сплава могут отскакивать или ломаться, вследствие образовавшихся при напайке трещин.

ПРИПОИ.

Припои, применяемые для напайки пластинок твердого сплава, должны иметь температуру плавления на

300° выше температуры, возникающей в процессе резания, сохранять прочность и пластичность при температуре резания, обладать хорошей жыдкотекучестью и обеспечивать быстрый отвод тепла от пластинки твердого сплава к стержню резца.

Рекомендуется применять следующие припои:

Наименование припоя Состав Температура плавления Область применения
Медно-никелевый (мельхиоровый) Медь — 68.7%
Никель — 27,5%
Алюминий — 0,8%
Цинк — 3,0%
1170° Для работ с большими нагрузками и нагревом режущей части инструмента до 900°
Электролитическая медь Медь — 99.9%
Примеси — 0,1%
1083° Для работ с большими нагрузками и нагревом режущей части инструмента до 700°
Латунно-никелевый Медь — 68,0%
Цинк — 27,0%
Никель — 5,0%
1000°
Латунь Л—62 Медь — 62.0%
Цинк — 38,0%
900° Для работ со средними нагрузками и нагревом режущей части инструмента до 600°
Серебрянный ПСР-45 (ОСТ—2982) Серебро — 10%
Медь — 53%
Цинк — 37%
720° Для припайки пластинок из высокотитановых твердых сплавов марок Т30К4

ФЛЮС.

Чтобы обеспечить хорошую смачиваемость и растекание припоя по поверхностям спаиваемых деталей, для удаления окислов и предохранения от окисления, применяют флюс.

В качестве флюса рекомендуется бура, которую нужно предварительно расплавить, истолочь и просеять через мелкое сито. Хранить буру нужно в закрытых сосудах, предохраняющих ее от влаги и загрязнения.

Бура применяется либо в виде порошка, либо в виде пасты, состоящей из трех весовых частей буры и двух частей вазелина.

Латунные припои паяют с флюсом, который состоит на половину из борной кислоты и на половину из буры. Температура плавления таких флюсов 750 ºС.

При напайке серебряными припоями следует применять флюс, состоящий из 43% фтористого кальция и 57% борной кислоты.

КОМПЕНСАЦИОННЫЕ ПРОКЛАДКИ.

Компенсационные прокладки необходимы для уменьшения термических напряжений. Они возникают при напайке твердосплавных пластинок, различной толщины и размеров, на стержни резцов. Прокладки больших размеров применяют из низкоуглеродистых сортов стали или пермалоя (железо-никелевый сплав). Большим спросом пользуются прокладки при напайке наиболее хрупких высокотитановых твердых сплавов.

Прокладки имеют вид тонкой сеточки или фольги, толщина которых составляет от 0,2 до 0,5 мм. На них имеются отверстия с диаметрами от 1 до 2 мм, расположенные в шахматном порядке.

Компенсационные прокладки имеют несколько достоинств:

Повышают прочность напайки;

Разгружают место спая от напряжений (возникающие при остывании резца).

СПОСОБЫ ПАПАЙКИ.

Нагрев стержня и пластинки и расплавление припоя могут осуществляться следующими способами:

а) в пламенных, газовых или электрических муфельных печах;

б) токами высокой частоты;

в) контактным способом, на стыковых сварочных аппаратах;

г) пламенем ацетилено-кислородной горелки.

Для уменьшения напряжений, возникающих в твердом сплаве при охлаждении после напайки, рекомендуется напаивать высокотитановые сплавы Т60К6 и Т30К4, особенно склонные к трещинообразованию, только по одной опорной плоскости; боковые поверхности пластинки предохраняются от припаивания применением прокладок из слюды или графита.

Пайка твердосплавных металлов

категория
Сварочное оборудование своими руками
материалы в категории

Для напайки твердосплавных пластин на державки токарных резцов, локальной закалки инструмента, пайки твёрдыми припоями мелких деталей используют нагрев токами высокой частоты или пламенем газовой горелки. Однако аппаратура ТВЧ громоздка и дорого стоит, она не для домашней мастерской или школьного кружка. Применить же газовую горелку по всем правилам может только сварщик высокой квалификации.

Но есть и еще один, почти забытый в наше время способ нагрева — на контактных машинах. Он наиболее приемлем в домашней, школьной, колхозной или совхозной мастерской, в техническом кружке.

Суть его в тепловом воздействии электрического тока на проводник. Выделяемое при этом количество тепла зависит от величины тока, времени его действия на проводник и электрического сопротивления последнего.

С учётом этой зависимости мы разработали аппарат, представляющий собой понижающий трансформатор, первичная обмотка которого рассчитана на-220 В, вторичная — на 2 В. Площадь поперечного сечения магнитопровода около 50 см 2 . Трансформатор закреплён на основании, а контактные шины вторичной обмотки — на прокладке-изоляторе.

Основание аппарата изготовлено из листовой стали толщиной 5 мм. Снизу в него ввёрнуты ножки. В основании прорезаны два окна: меньшее — для вентиляции, большее — для выхода болтов крепления контактных шин на текстолитовом изоляторе толщиной 10 мм. Отверстия по краям изолятора служат для его крепления к основанию.

Концы вторичной обмотки трансформатора заведены в отверстия зажимов и зафиксированы болтами (пазы зажимов позволяют деформировать их при затяжке и обеспечивать тем самым надёжный электрический контакт).

Трансформатор укрыт защитным кожухом и прикреплён к основанию уголками 25X25 мм. К одному из верхних уголков привинчена изоляционная колодка — для соединения проводов первичной обмотки с питающим шнуром и включателем аппарата.

Так как конструкторы-любители не часто имеют все необходимое для повторения описанной самоделки, рекомендуем начать изготовление аппарата с подбора пакета пластин трансформаторного железа (лучше Ш-образной формы), а уж затем заняться расчётом обмоток.

Предположим, что площадь поперечного сечения вашего магнитопровода (Q = аХв) равна 36,8 см 2 . Тогда мощность вторичной обмотки трансформатора Р2 = 36,8X36,8 = 1354,2 Вт, а первичной Р, = 1354,2/0,95 = 1425 Вт.

Сила тока I1 = 1425 Вт/220 В = 6, 48 А; I2=1354,2 Вт/2 В = 677,6А. Находим площадь поперечного сечения первичной обмотки:

S1= (6,48 А) / (2 А/мм 2) = 3,24 м 2 .

Диаметр провода отсюда d1= (4X3,24) / 3,14 = 2 мм.

Площадь поперечного сечения вторичной обмотки S2 = (677,6 А) / (2 А/мм 2 ) = 338,8 мм 2 , а диаметр провода
d2 = (4×338,8) / 3,14 =20,77 мм.

Соответственно определяем число витков:
n1 = 220000 / (222X36,8) = 270 витков,
n2 = (270X2) / 220 =2,5 витка.

Эффективность и экономичность работы аппарата во многом зависят от величины плоскости соприкосновения тела резца с контактными шинами. Количество тепла, выделяемое при прохождении электрического тока, зависит от сопротивления проводника в местах контакта. При большой плоскости соприкосновения выделяется мало тепла при значительном расходе электроэнергии. И наоборот, при малой плоскости выделяется много тепла, что приводит к мгновенному нагреву контактирующего слоя. Чтобы избежать оплавления металла и нарушения контакта, площадь соприкосновения подбирается опытным путём.

Аппарат контактного термонагрева

1 — защитный кожух, 2 — включатель, 3 — шнур электропитания, 4 — основание, 5 — изолятор, 6 — контактные шины, 7 — зажимы, 8 — болты зажимов, 9 — ножка (4 шт.).

При расположении тела резца на шинах, как показано на рисунке 3, очаг возникновения тепла будет располагаться в зоне А; в зоне Б визуально наблюдаемого очага тепла не возникает из-за большой поверхности соприкосновения.

Конструкция прижимного рычага

1 — стойка, 2 — рычаг, 3 — прижим.

Перед пайкой (в том числе твердосплавных пластин к державкам резцов) необходимо выполнить ряд подготовительных операций, чтобы обеспечить хорошую растекаемость припоя и смачиваемость им соединяемых деталей. Опорную поверхность пластин шлифуют и обезжиривают. Так же готовят поверхность под пластину на теле резца: она должна быть прямолинейной, без уступов и завалов по краям. Защита поверхностей деталей от окисления при пайке осуществляется флюсом (бурой).

Читайте также  Эстакада своими руками

Контактный участок аппарата

1 — контактные шины (красная медь),2 — прижимной рычаг, 3 — твердосплавная пластина, 4 — припой, 5 — державка резца, 6 — изолятор основания; А и Б — зоны прогрева.

Напайка происходит в такой последовательности. Державку резца располагают на шинах аппарата. Между соединяемыми поверхностями помещают пинцетом припой (обрезок листовой латуни). Для более надёжного прижима нагреваемых деталей друг н другу и и контактным шинам служит рычаг, установленный на пластине-изоляторе. В паз рычага вставлен упор, которым и осуществляется прижим твердосплавных пластин к державкам резцов.

При включении аппарата зона контакта быстро нагревается, металл плавится, контакт нарушается и процесс прерывается. Избежать этого можно двумя способами: работая в прерывистом режиме и плавно подавая напряжение на обмотки. В первом случае аппарат включается на 1,5-2 с, затем выключается. В момент отключения тепло передается от места контакта по телу резца, не оплавляя металл.

Плавную подачу напряжения можно обеспечить ЛАТРом. Увеличивая напряжение, добиваются того же результата, что и в первом случае: тепло волнами распространяется по державке от места контакта, обеспечивая нагрев до температуры плавления припоя. Контроль за процессом пайки осуществляется визуально.

Такие режимы дают скорость нагрева державки в пределах 80-100 град/с. Это уменьшает внутренние напряжения и предотвращает появление трещин в твердосплавных пластинах. Чтобы избежать появления трещин в паяном шве, необходимо медленное охлаждение.

Качественный паяный шов должен быть не толще 0,1 мм. Протяжённость непропаянных мест не должна превышать 10%.

При отсутствии твёрдых сплавов в качестве режущих пластин можно использовать обломки фрез, свёрл и других инструментов. Обломкам придается необходимая форма на заточном станке, или они нагреваются и отковываются до получения стержня прямоугольного сечения, который при повторном нагреве разрубается зубилом на отдельные пластины.

Наш аппарат многоцелевого назначения. Кроме изготовления резцов, его можно использовать и для локальной закалки инструмента (кернов, зубил, отвёрток и так далее). Достаточно прикоснуться к контактным шинам той частью инструмента, которую необходимо закалить, и подержать так несколько секунд. Температуру нагрева контролируют визуально, по цвету металла. При этом необходимо соблюдать меры предосторожности: работать в рукавицах и защитных очках на заземлённом аппарате.

А. БОБРОВНИКОВ, В. ЗИНЮК,
г. Мурманск
Моделист-конструктор 1988 №7

Как припаять твердосплавную пластину к резцу в домашних условиях

Фотография № 6: Припаиваем твердосплавную деталь к державке из стали Р18

Изготовление режущего инструмента с припайкой твердосплавных пластин возможно в бытовых условиях. Для этих целей используют аргоново-дуговую сварку. Ниже описан способ припайки элемента на болванку из стали Р18. Для работы понадобится аргоново-дуговой аппарат, действующий в режиме постоянного тока, бура и латунный присадочный элемент (проволока).

Фотография № 7: Насыпаем на державку буру

Перед припайкой поверхности обезжиривают, на место будущего соединения насыпают флюс и выставляют твердосплавную пластину. На скрепление деталей требуется 15–20 секунд.

Фотография № 8: Готовая деталь до очистки

Затем деталь очищают металлической щеткой и оставляют закаляться на открытом воздухе.

Пайка твердыми припоями

Использование твердых припоев занимает промежуточную позицию между низкотемпературной пайкой и уже сваркой.

Они применяются в тех случаях, когда важным становится прочность получаемых соединений и целостность структуры металлов. В таком процессе часто используют твердосплавные пластины, которые при соединении не портят изначальную геометрию конструкции.

Такую технологию применяют для ремонта холодильных или теплообменных систем, стальных или медных трубопроводов и т.д. Ее применяют и в автомобильном ремонте для починки радиаторов, двигателя, трансмиссий, кузова и других аналогичных деталей.

Если возникает необходимость отремонтировать изделия, которые во время эксплуатации поддаются воздействиям высоких температур (например, самовар на дровах), то высокотемпературная пайка просто необходима.

Что касается оборудования, то в этом случае требуется техника, которая способна дать температуру выше необходимой для плавления соединяемых деталей. Средний диапазон может варьироваться от 450 до 1200 градусов, при условии, что вся процедура будет производиться дома. Такие показатели имеют газовые горелки, индукторы и печи.

Виды применяемых припоев

Для того чтобы спаять резец, можно использовать и медь, хотя как альтернативу можно использовать его и с другими металлами (цинк, серебро, кремний, олово и т.д.). Каждый из таких компонентов снижает температуру плавления.

Но следует отметить, что такие припои не рекомендуется использовать, если работа предстоит со сталью или чугуном, так как в этом случае образуются фосфиты, которые влияют на прочность соединения. Такой шов будет очень хрупким, и, при оказании вибрационного или изгибающего давления, соединение может деформироваться или просто лопнуть.

Рекомендации по выбору отрезных резцов по металлу

Чтобы правильно выполнить отрезание без повышенного износа режущей пластины, а также обеспечить требуемое качество торца после отрезки, необходимо выставить резец строго перпендикулярно к детали. Кроме того, он должен быть установлен напротив оси вращения с отклонением по вертикали не более ± 0,1 мм. Размещение кромки лезвия даже на несколько десятых миллиметра выше может привести к поломке режущего лезвия, а при установке ниже уровня на заготовке может остаться непрорезанная ступенька. Отрезку необходимо производить максимально близко к кулачкам патрона, используя резец с минимальным вылетом.

Для облегчения обработки сложных материалов на настольных станках применяют пружинные и инвертированные резцы. Но, вероятно, народные умельцы для этих целей используют и другие конструкции, а также различные усовершенствования «штатных» резцов. Если вы что-нибудь знаете об этом, поделитесь, пожалуйста, информацией в комментариях к данной статье.

Классификация твердосплавных пластин

Применяемые напайки могут классифицироваться по достаточно большому количеству различных признаков. Основными можно назвать:

  1. Тип инструмента. Токарные резцы могут классифицироваться по предназначению. Твердосплавные пластины для токарных резцов могут применяться при изготовлении отрезных, канавочных, фасоснных, расточных и других вариантов исполнения. Стоит учитывать, что каждый вариант исплнения должен иметь собственный определенный профиль.
  2. Размеры. Рассматривая разновидности инструментов следует учитывать, что они классифицируются по размеру. К примеру, для больших заготовок потребуется вариант исполнения с большей режущей кромкой, так как это упростить процесс снятия металла.
  3. Материал изготовления. Различные виды твердосплавных пластин изготавливаются при применении определенных сплавов: титана, вольфрама, керамики. Их сочетание позволяет существенно повысить твердость материала и его износостойкость. Керамические варианты исполнения применяются при получистовой и чистовой обработке, так как подобный материал характеризуется высокой устойчивостью к воздействию температуры.
  4. Показатель заднего угла. Твердосплавные пластины для резцов могут иметь различный показатель величины заднего угла. Этот показатель определяет то, какого качества может проводится чистовая обработка. Большой задний угол позволяет работать с мягкими металлами.
  5. Класс точности. Производители выпускают изделия 5 классов точности. Они могут применяться для получения деталей с разной точностью размеров и формы. Стоит учитывать, что при увеличении точности режущей кромки существенно повышается стоимость предложения.

Пластины на основе керамики

Именно тип применяемого материала при изготовлении пластин определяет область его применения. Кроме этого, прочность, твердость и теплопроводность определяют на то, какие режимы резания могут быть выбраны при обработке. К примеру, скорость резания и величина подачи являются наиболее важными параметрами, так как скорость вращения заготовки и инструмента определяют чистоту образуемой поверхности, а подача – количество времени, требующегося для придания определенной формы заготовке.

Читайте также  Плинтус деревянный напольный

Конструкция и преимущества твердосплавных пластин

Конструкция твердосплавных пластин зависит от способа крепления и конфигурации резца. При болтовом креплении в пластинах имеется отверстие для крепежного элемента. В зависимости от типа инструмента твердосплавные пластины для токарных резцов могут быть квадратными, ромбическими, трехгранными, пятигранными и т. д. От количества граней зависит число режущих кромок и длительность эксплуатации.

Твердосплавные пластины изготавливаются путем прессования и термообработки порошков карбида вольфрама, карбида титана и других высокопрочных материалов. Помимо твердости пластины обладают высокой износо- и термостойкостью, способны сохранять свои свойства при температуре до +1150°С.

Основные эксплуатационные преимущества:

  • Возможность использовать на одном резце наиболее подходящую пластину твердосплавную, вид которой наиболее подходит для материала заготовки. Это позволяет иметь съёмный набор для различных операций.
  • Замена изношенной и разрушенной пластины обойдется намного дешевле, чем цельного резца. Применение съёмных пластин оправдано при мелко- и среднесерийном производстве, а также при частой смене номенклатуры изделий.
  • Минимальное время замены пластины.
  • Высокая надежность даже в условиях интенсивной работы.
  • Унификация пластин для удобной замены и подбора под тип обработки и марку стали.

Как выбрать твердосплавную пластину

Для того чтобы токарные работы по металлу отличались высокой эффективностью и точностью, необходимо правильно подобрать твердосплавные пластины, ассортимент которых отличается большим разнообразием форм и размеров. При выборе важно учитывать соответствие размера пластины и геометрических параметров режущего инструмента. Если не придерживаться данного правила, то закрепить приобретенное изделие на токарном резце будет очень проблематично.

Следующее, что следует учитывать при выборе, – это характеристики металла, из которого сделана заготовка. Твердосплавные пластины производятся из материалов, в которых основные металлы представлены в различном соотношении, что и определяет их эксплуатационные характеристики. Так, сменные пластины, изготавливаемые из твердых сплавов, можно разделить на две основные категории:

  • характеризующиеся повышенной устойчивостью к вибрациям, ударам и другим механическим нагрузкам;
  • успешно переносящие высокие температуры, которые образуются при длительной обработке заготовок из металла.

Резцы с механическим креплением пластин

Твердосплавные пластины первой категории используются при обработке, выполняемой на высоких скоростях, что обязательно сопровождается значительными механическими нагрузками, ударами и вибрацией. К моделям изделий, которые хорошо переносят высокие температурные нагрузки, целесообразно обращаться в том случае, если токарная обработка предполагает снятие большого слоя металла.

Естественно, на выбор пластин для токарных резцов оказывает влияние и тип обработки, которую планируется выполнять с их помощью. Каждый тип обработки, выполняемый при помощи резцов, на которых режущие пластины фиксируются механическим способом, предполагает определенную геометрию их рабочей части, а также другие особенности режущего инструмента.

Если предстоит большой объем токарной обработки, в процессе которой необходимо выполнять различные технологические операции, то лучше всего иметь под рукой набор сменных пластин с различными геометрическими и технологическими параметрами. Быстро выбирать изделия, которые будут оптимально соответствовать типу обработки, материалу заготовки и геометрии режущего инструмента, позволяют не только специальные знания, но и опыт, вырабатываемый со временем.