Искусственные полимеры примеры

Полимеры. Виды и применение. Как утроены и свойства. Особенности

Полимеры – сложные вещества, состоящие из длинных повторяющихся цепочек молекул. В зависимости от структуры могут иметь различные физические качества, к примеру, легко тянуться и обладать эластичностью, или наоборот отличаться твердостью. Под полимерами обычно подразумевают различные виды пластика, но на самом деле к ним можно отнести и белки, из которых состоит ДНК, РНК, полисахариды.

Как устроены полимеры

Полимер представляет собой молекулу, звенья которой повторяются много раз. В состав такой молекулы обычно входит всего 4 элемента. Это азот, кислород, водород и углерод. Данные элементы могут сочетаться в различных комбинациях. Из них можно составить сотни тысяч разных полимерных веществ с неожиданными свойствами. К примеру, ПЭТ и кевлар являются полимерами. При этом из ПЭТ делают пластиковые бутылки. Они легкие, прозрачные, гибкие. Кевлар же состоит из тех самых 4-х элементов, но с другой атомной решеткой. Он в 5 раз прочнее стали. Благодаря этому его используют для производства бронежилетов, касок.

Обычно под полимерами подразумевается пластик. Он является синтетической разновидностью полимера. На самом деле к ним можно отнести и естественные материалы, к примеру, древесину, резину, мел.

С понятием полимер тесно связаны термины полимеризация и макромолекула. Они были придуманы и введены в обиход Германом Штаудингером, который считается основателем учения о полимерах. Все современные вещества этого типа были созданы на основе его разработок. Под полимеризацией подразумевается непосредственно сам процесс создания искусственных полимеров, при котором маленькие молекулы мономеры соединяются в длинные цепочки ковалентными связями.

Макромолекула является большой молекулой полимера, состоящей из мономеров. Их количество может доходить до сотен тысяч. То есть, каждая молекула любого полимера — это макромолекула.

Свойства полимеров

Все они обладают особенными механическими свойствами, за счет чего выгодно выделяются среди остальных материалов. Благодаря их качествам они используются в разнообразных областях, начиная от медицины и заканчивая машиностроением. Одним из самых важных свойств выступает способность быстрого изменения физико-механических качеств при нанесении небольшого количества реагента.

Для разных полимеров характерны:
  • Эластичность.
  • Низкая хрупкость.
  • Способность молекул ориентироваться по направлению механического поля.
  • Высокая вязкость при растворении.

Многие полимеры при низком уровне прикладываемых усилий способны к растяжению и обратной деформации. Ярким тому примером является резина. Другие вещества, не являющиеся синтетическими или природными полимерами, данных качеств не имеют.

Кристаллический и стеклообразный полимер отличаются низким уровнем хрупкости. За счет этого при деформации или ударной нагрузке они сохраняют целостность, даже если не обладают эластичностью. Наиболее ярко эти качества выражены у пластмасс и органического стекла. Под воздействием направленного механического поля макромолекулы могут выстраиваться в определенную сторону. Это позволяет сформировать из них волокна. При растворении полимера даже при небольшой концентрации в растворе тот получается вязким.

Классификация полимеров
Разделение полимеров на виды возможно по нескольким параметрам. В первую очередь это можно сделать по химическому составу. По этому критерию они бывают:
  • Органические.
  • Неорганические.
  • Элементоорганические.

Органические состоят из органических звеньев главной цепи. За счет чего материал и получил такое название. У неорганического полимера нет органических звеньев вообще. Элементоорганический имеет углеводородные группы и неорганические звенья.

Также их разделяют на виды в зависимости от происхождения. Они бывают:
  • Природные.
  • Искусственные.
  • Синтетические.

Природные полимеры имеют естественное происхождение. Примером такого полимера может быть обыкновенная древесина, известь, кожа, шерсть и т.д. Искусственные являются тоже практически природными, просто имеющими некоторые усовершенствования, которые удалось добиться силами человека. За счет модификации они меняют свои первоначальные качества под необходимые свойства. Так, путем модификации целлюлозы был получен целлулоид. Синтетический полимер полностью является продуктом человеческого вмешательства. Самым первым представителем данной группы стала бакелитовая смола. Очень скоро количество подобных веществ выросло в сотни раз.

Также выполняется разделение полимеров на виды по другим критериям. К примеру, по строению макромолекул. Они могут быть:
  • Линейными.
  • Развернутыми.
  • Лестничными.
  • Трехмерными сшитыми.
Группы полимеров
Хотя каждый полимер имеет свои уникальные качества, но все же, многие вещества имеют очень похожие свойства. В связи с этим их можно объединять в группы:
  • Термопласты.
  • Реактопласты.
  • Эластомеры.
  • Огнеупорные.

Термопласты включают в себя полимеры, которые в нормальных температурных условиях имеют твердое состояние. При нагревании они становятся очень эластичными или вязкотекучими. Переходы состояний являются обратимыми. За счет этого их можно повторять многократно. Термопласты отлично подходят для вторичной переработки, так как могут переплавляться в новые изделия. Примерами термопластов являются полиэтилен, АБС, ПВХ.

Реактопласты являются веществами совершенно другого порядка. Они представляют собой пластмассы, которые уже нельзя расплавить или растворить. За счет этого вещества данной группы очень износоустойчивы. Обычно эти материалы существенно тверже, чем термопластичные. Примером реактопластов является эпоксидная смола, полиуретаны, полиамиды.

Эластомеры обладают высокой эластичностью и вязкостью. Каждый материал из этой группы может растягиваться существенно больше, чем его изначальная длина. При этом эластомеры возвращаются до исходного положения после снятия нагрузки. Нужно отметить, что многие вещества похожие на эластомеры относятся к термопластикам. Примерами эластомеров являлись каучук, бутилкаучук, цис-полиизобутиленовый, бутадиен-стирольный низкотемпературной полимеризации.

Большинство синтетических полимеров не могут использоваться в сочетании с огнем. Они быстро воспламеняются. Специально для решения этой проблемы была создана группа материалов с противоположными свойствами. Полученный в результате полимер не боится воздействия огня, так как совершенно не горит. Он обычно выглядит как твердый легкий пластик. Материал не теряет форму при нагреве. За это качество он получил достаточно широкую сферу использования. Стойкость к горению и плавке делает его сложным материалом для вторичной переработки.

Применение полимеров
Полимеры благодаря легкости, коррозийной стойкости и прочности получили крайне широкое распространение. Их используют даже чаще чем металлы, и любые другие материалы. Особенно хорошо они применяются в следующих направлениях:
  • Автомобилестроении.
  • Авиастроении.
  • Судостроении.
  • Медицине.
  • Пищевой промышленности.

Полимер является неотъемлемым материалом для производства автомобилей. Из него делают резину для колес, пластик для внутренней отделки, краски и лаки. Также из него изготавливаются прочные легкие кузова автомобилей, теплоизоляцию и звукоизоляцию. Резина на шинах является полимером, также из него сделаны шланги, уплотнительные прокладки. Многие детали могут быть изготовлены исключительно из полимера, поэтому это крайне важное вещество для любого направления применения.

Полимер получил огромное распространение в авиации. Он очень легкий и обладает достаточной прочностью для применения в ответственных механизмах. В связи с этим он стал использоваться не только в авиастроении, но и производстве космических кораблей, ракет. Для этих целей применяют самые передовые материалы. В основном для производства колес, стекла, герметиков, клея.

Физико-химические и механические качества позволяют использовать полимер в медицине. В частности, из них делают специализированное оборудование, различные предметы для ухода за больными, инструменты. Также полимеры используются в хирургии. Из них вытачивают протезы. На основе полимеров создают кровезаменители и плазмозаменители. Каждый полимер для медицинского применения отличается низким уровнем разрушения при трении, но высокой химической устойчивостью.

Читайте также  Можно ли соединять рабочий ноль с заземлением

Полимеры также применяются для решения нужд пищевой промышленности. Для этой сферы они используются в огромных количествах. Так, любая упаковка продуктов — это полимер. Это фантики, обертки, пакеты всех типов, бутылки. Применение полимеров в пищевой отрасли вызвано необходимостью соблюдения санитарного режима. Каждое изделие в такой упаковке является изолированным от прямого внешнего воздействия. За счет дешевизны такие упаковки можно использовать одноразово. В дальнейшем в зависимости от типа полимера они могут переплавляться на новый товар или просто выбрасывать. Ведутся разработки по создании искусственной кожи из полимера.

Также полимеры получили широкое распространение в судостроении. Из них делают краски, пластиковые панели, уплотнители. Также из полимера могут изготавливаться небольшие рыбацкие лодки. Они очень легкие, потому используются повсеместно. В первую очередь это надувные лодки.

Классификации полимерных материалов

Зависимо от происхождения полимеры разделяют на синтетические и природные. Несмотря на востребованность природных составляющих, материалы искусственного происхождения, которые производят на низкомолекулярной основе, благодаря синтезу, пользуются большим спросом.

Различия по химическому составу позволяет делить полимерные материалы на:

  • неорганические, у которых нет однотипных соединений, при этом есть органические радикалы, в качестве дополнительных составляющих;
  • элементоорганические полимеры, отличаются способностью удерживать в органическом радикальном соединении, атомы неорганики, хорошо сочетающихся с органикой;
  • органические, которые используют, как основу для пластмассовых изделий.

Характерным отличием структуры, влияющим на свойства материала оказывает макромолекула. Ее вид позволяет разделить полимеры на:

  • плоские;
  • ленточного типа;
  • разветвленной структуры;
  • линейного характера;
  • сетчатого типа;
  • гребнеобразные полимеры;
  • прочие виды.

По свойствам соединений звеньев, полимерные материалы делят по полярности, влияющую на растворимость материалов в разных средах. Ее определяют по разобщению положительных и отрицательных зарядов. Характера этих связей позволяет разделить полимеры на:

  • гидрофильные;
  • гидрофобные;
  • амфильные.

Иначе говоря, можно отнести перечисленные категории к полярным, неполярным или смешанным. Кроме этого, полимеры имеют разные свойства при изменении температуры. Они бывают:

  • термопластичные, имеющие свойство размягчения, при увеличении градуса, а при понижении – твердеют;
  • термореактивные, подвержены разрушению структурных связей между звеньями.

Явным примером, подчеркивающим различие структуры, будет письмо, отправленное по почте, предварительно заклеенное в конверт. В процессе транспортировки, тщательно склеенные поверхности остаются невредимыми. Но стоит нагреть обработанное место на огне или с помощью раскаленного металлического предмета, как клей утратит свои свойства и конверт откроется.

Полимерные материалы делят на два типа: синтетический (искусственный) и огнеупорный. Синтетика встречается в различных сферах жизнедеятельности человека: в строительстве, промышленности, быту и даже – в одежде. Производство искусственного сырья началось в первые годы ХХ века. Первым запатентованным материалом была бакелитовая смола, которая при нагревании меняла форму.

Современные синтетические материалы подвержены влиянию огня и высоких температур, а некоторые из них могут воспламеняться. Чтобы избежать подобное используют добавки, а также синтезируют сырье с помощью хлора или брома. Галогенированный полимерный материал, который получается после обработки, при сжигании образует газ, способствующий повышению коррозии других материалов. Разнообразие структур полимеров по химическому составу позволяет разделить материалы на несколько видов, которые находят все большее применение в народном хозяйстве.

  1. Полиэтилен Известен по широко применяемой упаковке различного назначения. Свойства и низкая себестоимость сделала такие материалы популярными в разных отраслях. Различают полиэтилен низкого давления, который обладает прочной структурой молекул и высокого давления, с противоположными свойствами. Эти материалы имеют одинаковы по химическому составу, но различаются по структуре решетки.
  2. Полипропилен Прозрачный полимер изготовленный методикой экструзии с охлаждением методом полива или другим способом с раздувом. Не контактирует с маслами и жирами, не деформируется при температурных изменениях, пропускает водяные пары. Эти свойства материала применяются в пищевой и строительной отрасли.
  3. Поливинилхлорид Такие материалы с полимерной основой встречается реже других из-за способности быть хрупким и не эластичным. Был популярен в 60-е годы прошлого столетия, при сжигании образует диоксин. Современные материалы вытесняют эти полимеры за счет более высокой экологичности и улучшения структуры сырья.
  4. Полиолефин Благодаря разнообразному строению макромолекул, эти полимеры включает в себя составляющие элементы пропилена и полиэтилена. Более половины производимой полимерной продукции относят к полиофелинам. Стойкость к разрыву, нагреву и усадке, позволит в ближайшем будущем увеличить объемы изготовления этого сырья. Тем более, что экологичность, которой обладают такие материалы выше других полимеров, а при производстве и утилизации – не выделяет вредных веществ.

Классификация по структуре

По структуре полимеры делятся на: линейные, разветвленные и пространственные.

Химические связи имеются и между цепями, образуя пространственную структуру

Линейные — макромолекулы состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру (целлюлоза, полиэтилен низкого давления, капрон).

Разветвленные — макромолекулы которых имеют боковые ответвления от цепи, называемой главной или основной (крахмал).

Сетчатые (пространственные) — химические связи имеются и между цепями (резина, фенолформальдегидные смолы).

Виды полимеров

По своему происхождению полимеры можно разделить на три типа:

  • природные. Природные или натуральные полимеры можно встретить в природе в естественных условиях. К этой группе относятся, например, янтарь, шелк, каучук, крахмал.

  • синтетические. Синтетические полимеры получают в лабораторных условиях, синтезирует их человек. К таким полимерам относятся ПВХ, полиэтилен, полипропилен, полиуретан. эти вещества не имеют ни какого отношения к природе.
  • искусственные. Искусственные полимеры отличаются от синтетических тем, что они синтезированы хоть и в лабораторных условиях, но на основе природных полимеров. К искусственным полимерам относится целлулоид, ацетатцеллюлоза, нитроцеллюлоза.

С точки зрения химической природы полимеры делятся на органические, неорганические и элементоорганические. Большая часть всех известных полимеров являются органическими. К ним относятся все синтетические полимеры. Основу веществ неорганической природы составляют такие элементы, как S, O, P, H и другие. Такие полимеры не бывают эластичными и не образуют макроцепей. Сюда относятся полисиланы, поликремниевые кислоты, полигерманы. К полимерам с элемнтоорганической природой относится смесь как органических, так и неорганических полимеров. Главная цепь – всегда неорганическая, боковые – органические. Примерами полимеров могут служить полисилоксаны, поликарбоксилаты, полиорганоциклофосфазены.

Все полимеры могут находится в разных агрегатных состояниях. Они могут быть жидкостями (смазки, лаки, клеи, краски), эластичными материалами (резина, силикон, поролон), а также твердыми пластмассами (полиэтилен, полипропилен).

Искусственные полимеры примеры

Классифицируются полимеры по различным признакам: составу, форме макромолекул, полярности, отношению к нагреву и т.д.

1. По составу основной цепи

гомополимеры полимеры, построенные из одинаковых мономеров:

(целлюлоза, состоящая из остатков β-D-глюкозы);

— сополимеры — полимеры, цепочки молекул которых состоят из двух или более различных структурных звеньев:

(нуклеиновая кислота, гиалуроновая кислота, белки);

— блок-сополимеры, состоящие из нескольких полимерных блоков:

Сополимеры получаются в результате реакций сополимеризации.

2. По строению главной цепи

гомоцепные

–СН 2 –СН 2 –СН 2 , –SiН 2 –SiН 2

гетероцепные

–СН 2 –О–СН 2 –О– , –Si (СН 3 ) 2 –О–

Гомоцепные полимеры имеют главную цепь, состоящую из одинаковых атомов. Если она состоит из атомов углерода, то такие полимеры называют карбоцепными (полиэтилен, полистироли др.).

Читайте также  Как подключить розетку

Гетероцепными называют такие полимеры, главная цепь которых состоит из различных атомов. К гетероцепным полимерам относятся простые эфиры, например, полиэтиленгликоль.

3. По регулярности строения цепи

— регулярные (стереорегулярные и стереонерегулярные) (присоединение мономерных звеньев по схеме «голова к хвосту» («головой» называется часть звена без заместителя, а «хвостом», соответственно, часть звена с заместителем);

нерегулярные (беспорядочное чередование мономеров различного химического состава).

Однако в большинстве случаев присоединение звеньев идет по типу «голова к хвосту» и при таком строении полимерная цепь довольно регулярна.

4. По форме макромолекулы

линейные;

разветвленные;

пространственные (сшитые)

Линейные и разветвленные цепи полимеров можно превратить в пространственные структуры «сшиванием» с помощью света, радиации или под действием химических реагентов.

5. По химическому составу

По химическому составу полимеры подразделяются на органические, элементоорганические и неорганические.

Органические полимеры составляют наиболее обширную группу соединений. Органические полимеры в главной цепи кроме атомов углерода, могут содержать также и другие элементы — кислород, азот, серу и т.д. Органическими полимерами являются смолы и каучуки.

Элементоорганические соединения в природе не встречаются. Этот класс материалов полностью создан искусственно.

Элементоорганические полимеры содержат в основной цепи неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами (СН3, С6Н5, СН2). Эти радикалы придают материалу, прочность и эластичность, а неорганические атомы сообщают повышенную теплостойкость. Представителями их являются кремнийорганические соединения.

Неорганические полимеры построены из атомов кремния, алюминия, германия, серы и др. и не содержат органические боковые радикалы. Неорганические полимеры являются основой керамики, стекол, ситаллов, слюдяных, асбестовых, углеграфитовых и других материалов.

6. По отношению к нагреванию

термопластические;

термореактивные

При нагревании термопластических полимеров их свойства постепенно изменяются и при достижении определенной температуры они переходят в вязкотекучее состояние. При охлаждении жидких термопластических полимеров наблюдаются обратные явления. Химическая природа полимера при этом не изменяется, процесс плавления и процесс отвердевания обратим.

К термопластическим полимерам относятся полиэтилен, полистирол, поливинилхлорид.

При нагревании термореактивных полимеров (реактопласты) они приобретают сетчатую структуру. Такие полимеры не восстанавливают свои свойства при нагревании и последующем охлаждении. Примером таких полимеров служат фенолформальдегидные смолы, мочевиноальдегидные, полиэфирные, эпоксидные и карбамидные смолы. Они содержат обычно различные наполнители.

7. По развитию деформации (при комнатных температурах)

пластомеры;

— эластомеры

Полимеры, которые легко деформируются при комнатной температуре, называют эластомерами, трудно деформируемые пластомерами (пластиками).

8. По природе (происхождению)

— природные;

— искусственные;

— синтетические

Полимеры, встречающиеся в природе – органические вещества растительного (хлопок, шелк, натуральный каучук, целлюлоза и др.) и животного (кожа, шерсть и др.) происхождения, а также минеральные вещества (слюда, асбест, естественный графит, природный алмаз, кварц и др.).

Искусственные полимеры получают из природных полимеров путем их химической модификации. Одним из наиболее распространенных природных полимеров, который непрерывно регенерируется в процессе фотосинтеза, является целлюлоза.

Нитроцеллюлоза и ацетатцеллюлоза – продукты химической модификации целлюлозы – искусственные полимеры. Они растворимы в ацетоне, хлороформе и др. растворителях.

Эфиры целлюлозы используют для получения фотопленки и волокон.

Вискозная нить получается растворением природной целлюлозы в сероуглероде со щелочью с последующим ее выделением. Вискозная нить и целлюлоза природная имеют различную кристаллическую структуру, пластмасса целлулоид получается обработкой нитроцеллюлозы камфарой в присутствии спирта.

Синтетические полимеры получают из простых веществ путем химического синтеза. Основным преимуществом синтетических полимеров перед природными являются неограниченные запасы исходного сырья и широкие возможности синтеза полимеров с заранее заданными свойствами. Исходным сырьем для получения синтетических полимеров являются продукты химической переработки нефти, природного газа и каменного угля.

9. По полярности

полярные;

неполярные

Полярные содержат полярные группы -OH, -COOH, -CN, -Cl, -CONH2 — ПВС (поливиниловый спирт), ПВХ (поливинилхлорид).

Неполярные не содержат полярных групп атомов — ПЭ (полиэтилен), ПП (полипропилен) и др.

Синтетические полимеры


Примеров переработки природных полимеров в искусственные можно привести очень много.

Но со временем были созданы синтетические полимеры, которые заменили природные и искусственные. Толчком для создания синтетических полимеров послужило открытие русского химика Александра Михайловича Бутлерова.

Теория химического строения органических веществ

В основе современной органической химии лежит теория химического строения органических веществ, автором которой является русский химик и ученый Александр Михайлович Бутлеров. В 1842 г. Бутлеров впервые провел реакцию полимеризации и изомеризации, доказав, что свойства веществ могут меняться в результате изменения строения молекулы, даже если состав и молекулярный вес не меняются.

После создания этой теории появилась химия высокомолекулярных полимерных соединений. В состав таких соединений входят молекулы с числом атомов до сотен тысяч. Началась целенаправленная модификация (изменение) химических веществ. Были созданы абсолютно новые синтетические полимеры. Свойства этих полимеров значительно превосходили свойства природных полимеров.

Образование полимеров

В природе биологические полимеры или биополимеры получаются естественным путем в процессе жизнедеятельности растительных и животных организмов. Искусственные же полимеры производят как правило нефтехимические и газохимические предприятия путем двух основных видов химических реакций: полимеризации и поликонденсации

Полимеризация – это процесс синтеза полимера путем присоединения повторяющихся цепочек молекул (звеньев) мономера к активному центру роста макромолекулы высокомолекулярного соединения. В упрощенном виде механизм полимеризации можно расписать по следующим стадиям:

  • образование центров полимеризации;
  • рост макромолекул полимера при присоединения очередных звеньев;
  • возникновение новых центров полимеризации на других молекулы и их интенсивный рост;
  • возникновение разветвленных молекул полимеров;
  • прекращение роста макромолекул.

Обычно полимеризация не возникает при нормальных условиях. Для начала химического процесса полимеризации на низкомолекулярное сырье оказывают разнообразные методы воздействия в зависимости от каждого конкретного техпроцесса: воздействие светом или другим типом облучением, повышенным давление, высокими температурами. При этом, наиболее эффективно процесс идет в среде катализатора, подбираемого для каждого конкретного процесса получения определенного полимера персонально. При образовании полимеров при помощи полимеризации не выделяется побочных веществ реакции, химический состав веществ остается неизменным, но меняется структура связей в веществе.

Рис. 2 Завод по производству полиэтилена

Поликонденсация – это процесс синтеза полимеров из низкомолекулярных веществ при помощи перегруппировки атомов выделения побочных продуктов поликонденсации. Это могут быть различные низкомолекулярные соединения, например вода. Методом поликонденсации выпускают такие крупнотоннажные полимеры, как полиуретаны, поликарбонаты, фенолоальдегидные смолы.

Полимеризация это метод создания синтетического полимера путем объединения многих малых молекул мономеров в цепи ковалентными связями. Существуют две основные формы полимеризации. Основное различие между двумя типами полимеризации в том, что в цепочке с ростом полимеризации мономера молекулы не будут добавлены в цепочку по одному. В случае пошагового роста полимеризации мономера молекулы могут связываться непосредственно друг с другом в любой последовательности. Разумеется процесс полимеризации не так прост, как описано выше. Он полон сложностей и связан с применением уникальных технологий. Однако в обзорной статье мы не станем углубляться во все эти тонкости. Более подробную информацию о полимеризации вы сможете посмотреть на странице: http://www.simplexnn.ru/?id=10138

Читайте также  Печи для бань своими руками чертежи

Ученые химики давно заметили одну интересную особенность, связанную с полимерами: если посмотреть на полимерную цепь под микроскопом, то можно увидеть, что визуальная структура и физические свойства молекулы цепочки будет имитировать реальные физические свойства полимера.

Например, если полимерная цепь состоит из туго скрученных между нитей мономеров и их трудно разделить, то, скорее всего, этот полимер будет сильным и упругим. Или, если полимерная цепь на молекулярном уровне проявляет эластичность, скорее всего, и полимер будет иметь гибкие свойства.

Переработка полимеров
Большинство изделий из полимеров можно изменить и деформировать под воздействием высоких температур, однако на молекулярном уровне сам полимер может, не изменится и из него можно будет создать новое изделие. Например, можно расплавить пластиковую тару и бутылки и затем сделать из этих полимеров пластиковые контейнеры или детали автомобилей.

Примеры Полимеров
Ниже приводится список самых распространенных полимеров, используемых в наше время, а также их основное применение:

  • Полипропилен (PP) – Производство ковровых покрытий, тара для продуктов, фляги.
  • Неопрен – Гидрокостюмы
  • Поли-винил-хлорид) (PVC) — Производство трубопроводов, профнастил
  • Полиэтилен низкой плотности (LDPE) — Продуктовые пакеты
  • Полиэтилен высокой плотности (HDPE) – Тара для моющих средств, бутылки, игрушки
  • Полистирол (PS) — Игрушки, пены, бескаркасная мебель
  • Политетрафторэтилен (ПТФЭ, фторопласт) — антипригарные сковородки, электрическая изоляция
  • Полиметилметакрилат (ПММА, плексигласа, оргстекла) – офтальмология, производство акриловых ванн, осветительная техника
  • (ПВА) — Краски, клеи
Задание Напишите уравнения получения полиакрилонитрила и фторопласта.
Решение n (CH2=CH-CN) = -(-CH2-CH(CN)-)-
Задание Полистирол хорошо растворяется в неполярных органических растворителях: бензоле, толуоле, ксилоле, тетрахлориде углерода. Вычислите массовую долю (%) полистирола в растворе, полученном растворением 25 г полистирола в бензоле массой 85г. (22,73%).
Решение Записываем формулу для нахождения массовой доли:

Найдем массу раствора бензола:

mр-ра(C6H6) = m(C6H6)/(/100%)

Найдем массу раствора полистирола в бензоле:

mр-ра(полистирол в бензоле)= 25 + 373,95 = 398,95 (г)

Найдем массовую долю полистирола в бензоле:

(полистирола) = 25/398,95 × 100% = 6,27%