Главный закон электричества для «чайников»

Главный закон электричества для «чайников»

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Данная статья поможет вам начать понимать основы электрики. Главное, что вы должны усвоить – это закон, который связывает между собой силу тока, напряжение в сети и сопротивление энергопотребителя, подключенного к ней.

Сопротивление

Металл, применяемый при изготовлении токопроводящей жилы кабеля или провода, обладает удельным сопротивлением, зависящим от материала. Кроме того, с увеличением длины проводника растет и сопротивление, поскольку электрическому току необходимо преодолеть более значительное «расстояние». Также сопротивление увеличивается, если проводник более тонкий.
Расчет сопротивления осуществляется между точками подключения.

Напряжение

В России напряжение в силовой розетке составляет 230 В, в USB-розетке – 5 В, в аккумуляторе автомобиля – 12 В. В других странах сетевое напряжение может отличаться. Например, в США оно составляет 100-127 В. Увеличение напряжения обеспечивает возможность передавать большее количество энергии.

Напряжение находится, например, между «+» и «-» в обычных батарейках, а также в силовой розетке между входами для вилки.

Сила тока

Когда какое-либо сопротивление подключается к напряжению, возникает новая величина – сила тока. При уменьшении сопротивления сила тока всегда возрастает.

Достигнуть низкого сопротивления не так уж и трудно. С этим поможет справиться проволока небольшой длины. С целью ограничения силы тока используют автоматические выключатели. Они бывают разными, например, на 6, 10, 16 А и т.д.

Мощность

Мощность можно вычислить, умножив силу тока на напряжение. Логично, что при делении мощности на напряжение мы получаем значение силы тока.

На большинстве современных электрический приборов указана потребляемая мощность. О напряжении в бытовых силовых розетках мы уже говорили.

Для примера возьмем обычный электрический чайник. Мощность у выбранной нами модели составляет около 2000 Ватт (2 кВт), а напряжение в розетке – 230 Вольт (0,23 кВ). Делим 2 кВт на 0,23 кВ и получаем силу тока, которая равняется примерно 9 Амперам. Теперь идем в щиток и смотрим, что у нас на розеточные группы установлен автоматический выключатель на 16 Ампер. Это означает, что чайник мы можем включить без проблем. А если вам необходимо включить второй такой чайник (или любой другой прибор с такой же мощностью), то лучше не делать этого одновременно.

Главный закон электрики

Значение силы тока в бытовых приборах будет увеличиваться пропорционально увеличению мощности, указанной на корпусе устройства. При одном и том же напряжении ток будет больше в том приборе, сопротивление которого меньше. Это можно определить с помощью соответствующих измерений.

Провод небольшой длины обладает относительно малым сопротивлением. Если подключить его к силовой розетке, то значение тока, которое пройдет по нему, будет слишком велико.

Стоит помнить, что сопротивление нагревательных приборов резко возрастает из-за нагревания нити накала.

Если мы говорим об индуктивных нагрузках, то здесь возникает реактивное сопротивление.

Мы рассказали вам о главном законе электричества – законе Ома для участка цепи. Понимание данного принципа поможет вам осознать многие процессы, возникающие в электрике.

Что изучает электротехника

Основа электрики формировалась в XIX веке. Те времена называют эпохой грандиозных открытий основополагающих законов, дающих все представления об электричестве. Электротехника (ЭТ) как наука начинала делать свои первые шаги. Теория стала подкрепляться практикой. Появились первые электротехнические устройства, совершенствовались коммуникационные системы доставки электроэнергии от источника потребителю.

Базой развития электротехники стали достижения в области физики, химии и математики. Новая наука изучала свойства электрического тока, природу электромагнитных излучений и другие процессы. По мере накопления знаний ЭТ становилась наукой прикладного характера.

Современная научная дисциплина изучает устройства, в которых используется электрический ток. На основании исследований создаются новые более совершенные электротехнические установки, приборы и устройства. ЭТ – одна из передовых наук, являющаяся одним из основных двигателей прогресса человеческой цивилизации.

На схеме приведена типовая двухконтурная проводка. На объект через автомат (A2), УЗО (A3) и электрический счетчик (A4) заведено сетевое напряжение осветительной сети (O1). Далее это напряжение разводится на два контура — осветительный и силовой. Оба контура имеют отдельные автоматы (A4 — осветительный контур, A5 — силовой) для их защиты от перегрузок и раздельного отключения при ремонтных работах. Автомат осветительного контура обычно выбирается на меньшую силу тока, чем автомат силового контура. К осветительному контуру подключены лампы (L1LN) и две розетки (S1, S2) для подключения маломощных нагрузок, например, компьютера или телевизора. Эти розетки используются при ремонтных работах на силовом контуре для подключения электроинструмента. Силовой контур разведен на силовые розетки (S3SN).

На схемах место соединения проводников обозначается точкой. Если проводники пересекают друг друга, но точки нет, то это означает, что проводники не соединены, они пересекаются без соединения.

Параллельное и последовательное соединения

Электрические цепи могут быть соединены параллельно и последовательно.

При последовательном соединении электрический ток, выходящий из одной цепи, попадает в другую. Таким образом, через все цепи, соединенные последовательно, протекает одинаковый ток.

При параллельном соединении электрический ток разветвляется на все цепи, соединенные параллельно. Таким образом, суммарный ток равен сумме токов в каждой цепи. Зато на цепи, соединенные параллельно, подается одинаковое напряжение.

На приведенной схеме входной автомат, УЗО, счетчик и вся остальная схема соединены последовательно. В результате автомат может ограничивать силу тока во всей цепи, а счетчик — измерять потребляемую энергию. Оба контура и нагрузки в них соединены параллельно, что позволяет подвести к каждой нагрузке сетевое напряжение, на которое она рассчитана, независимо от других нагрузок.

Здесь приведена принципиальная электрическая схема. Бывают еще монтажные схемы. На них указывается на плане объекта, где должна пройти проводка, где установить щит, где поставить розетки, выключатели и осветительные приборы. Там совсем другие обозначения. Я — не специалист в этих схемах. Информацию о них поищите в других источниках.

1 2 3 4 5 6 7 8

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Задать вопрос электрику онлайн Здесь Вы можете спросить меня про электропроводку, электрику и другие тонкости электромонтажа. Читать дальше.

Почему водопровод бьет током? Что делать.
Почему может бить током от водопровода, водопроводных смесителей? Причины электр.

Естественная, гравитационная циркуляция теплоносителя.
Теплоносители для систем отопления. Отопительные контуры. Естественная (гравитац.

Мебельная клееная доска, ступень. Критерии качества. Характеристики. Э.
Как выбрать мебельный щит. Особенности применения. Технологические свойства. Экс.

Техника безопасности

Главное при выполнении электротехнических работ, это соблюдение техники безопасности. Если неправильная работа может привести к выходу из строя оборудования, то несоблюдение техники безопасности — к травмам, инвалидности или летальному исходу.

Главные правила — это не прикасаться к проводам, находящимся под напряжением, голыми руками, работать инструментом с изолированными ручками и при отключении питания вывешивать плакат «не включать, работают люди». Для более подробного изучения этого вопроса нужно взять книгу «Правила техники безопасности при электромонтажных и наладочных работах».

Читайте также  Крепление для провода

Безопасность и практика

Для начала нужно внимательно изучить раздел, касающийся техники безопасности. В таком случае во время работ, связанных с электричеством, не будет возникать чрезвычайных ситуаций, опасных для здоровья.

Для того чтобы на практике реализовать теоретические знания, полученные после самостоятельного изучения основ электротехники, можно начать со старой бытовой техники. До начала ремонта обязательно ознакомьтесь с инструкцией, прилагаемой к прибору. Не забывайте, что с электричеством шутить не нужно.

Электрический ток связан с передвижением электронов в проводниках. Если вещество не способно проводить ток, его называют диэлектриком (изолятором).

Для движения свободных электронов от одного полюса к другому между ними должна существовать определенная разность потенциалов.

Интенсивность тока, проходящего через проводник, связана с количеством электронов, проходящих через поперечное сечение проводника.

На скорость прохождения тока влияет материал, длина, площадь сечения проводника. При увеличении длины провода, увеличивается его сопротивление.

Из чего состоит электрический ток

Электрический ток – это направленное или упорядоченное движение заряженных частиц (электронов, ионов). Такие частицы называют носителями электрического заряда. Для того чтобы движение появилось, в веществе должны быть свободные заряженные частицы. Способность заряженных частиц перемещаться в веществе определяет проводимость этого вещества. По проводимости вещества различают на проводники, полупроводники, диэлектрики и изоляторы.

В металлах заряд перемещают электроны. Само вещество при этом никуда не утекает – ионы металла надёжно закреплены в узлах структуры и лишь слегка колеблются.

В жидкостях заряд переносят ионы: положительно заряженные катионы и отрицательно заряженные анионы. Частицы устремляются к электродам с противоположным зарядом, где становятся нейтральными и оседают.

В газах под действием сил с разными потенциалами образуется плазма. Заряд переносится свободными электронами и ионами обоих полюсов.

В полупроводниках, заряд перемещают электроны, перемещаясь от атома к атому и оставляя после себя разрывы, считающиеся положительно заряженными.

Цены на электромонтажные работы

Прежде всего, я работаю с клиентами, которые заинтересованы в НАДЕЖНОЙ и БЕЗОПАСНОЙ электропроводке, которая делается НАДОЛГО. Если наши цели будут совпадать, то мы всегда договоримся о цене.

Работа профессиональным инструментом, позволяет сократить время для выполнения электромонтажных работ и сделать цены доступными для большинства моих клиентов:

Стоимость работ указана в бел.рублях. Цена актуальна на 2020 год.

Более подробно с ценами, на которые я опираюсь, можно ознакомиться на странице с расценками или скачать актуальный прайс-лист (от 01.01.2020 года)

Трансформатор

В свою очередь, получение и передача переменного тока сильно взаимосвязаны с таким прибором как трансформатор. Генератор, который производит переменный ток, устроен гораздо проще, нежели генератор для постоянного тока. И в целом, для передачи энергии на большие дистанции переменный ток подходит намного лучше. При его помощи тратится меньше энергии.

Пример домашнего трансформаторв

С помощью генератора переменный ток превращается с низкого напряжения на высокое и напротив. По этой причине огромное количество устройств действует от сети, где ток именно переменный. Но постоянный ток также очень широко используют — во всех типах батарей, в химической отрасли и иных сферах.

Основы электричества

«Физика — 11 класс»

Производство электроэнергии

Производится электроэнергия на электрических станциях в основном с помощью электромеханических индукционных генераторов.
Существует два основных типа электростанций: тепловые и гидроэлектрические.
Различаются эти электростанции двигателями, вращающими роторы генераторов.

На тепловых электростанциях источником энергии является топливо: уголь, газ, нефть, мазут, горючие сланцы.
Роторы электрических генераторов приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания.

Тепловые паротурбинные электростанции — ТЭС наиболее экономичны.

В паровом котле свыше 90% выделяемой топливом энергии передается пару.
В турбине кинетическая энергия струй пара передается ротору.
Вал турбины жестко соединен с валом генератора.
Паровые турбогенераторы весьма быстроходны: число оборотов ротора составляет несколько тысяч в минуту.

Тепловые электростанции — ТЭЦ позволяют значительную часть энергии отработанного пара использовать на промышленных предприятиях и для бытовых нужд.
В результате КПД ТЭЦ достигает 60—70%.
В России ТЭЦ дают около 40% всей электроэнергии и снабжают электроэнергией сотни городов.

На гидроэлектростанциях — ГЭС для вращения роторов генераторов используется потенциальная энергия воды.

Роторы электрических генераторов приводятся во вращение гидравлическими турбинами.
Мощность такой станции зависит от создаваемого плотиной напора и массы воды, проходящей через турбину в каждую секунду.

Гидроэлектростанции дают около 20% всей вырабатываемой в нашей стране электроэнергии.

Атомные электростанции — АЭС в России дают около 10% электроэнергии.

Использование электроэнергии

Главным потребителем электроэнергии является промышленность — 70% производимой электроэнергии.
Крупным потребителем является также транспорт.

Большая часть используемой электроэнергии сейчас превращается в механическую энергию, т.к. почти все механизмы в промышленности приводятся в движение электрическими двигателями.

Передача электроэнергии

Передача электроэнергии связана с заметными потерями, так как электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля — Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой

где
R — сопротивление линии,
U — передаваемое напряжение,
Р — мощность источника тока.

При очень большой длине линии передача энергии может стать экономически невыгодной.
Значительно снизить сопротивление линии R практически весьма трудно, поэтому приходится уменьшать силу тока I.

Так как мощность источника тока Р равна произведению силы тока I на напряжение U, то для уменьшения передаваемой мощности нужно повысить передаваемое напряжение в линии передачи.

Для этого на крупных электростанциях устанавливают повышающие трансформаторы.
Трансформатор увеличивает напряжение в линии во столько же раз, во сколько раз уменьшает силу тока.

Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Генераторы переменного тока настраивают на напряжения, не превышающие 16—20 кВ. Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генераторов.

Далее для непосредственного использования электроэнергии потребителем необходимо понижать напряжение.

Это достигается с помощью понижающих трансформаторов.

Понижение напряжения (и соответственно увеличение силы тока) осуществляются поэтапно.

При очень высоком напряжении между проводами может начаться разряд, приводящий к потерям энергии.
Допустимая амплитуда переменного напряжения должна быть такой, чтобы при заданной площади поперечного сечения провода потери энергии вследствие разряда были незначительными.

Электрические станции объединены высоковольтными линиями электропередачи, образуя общую электрическую сеть, к которой подключены потребители.
Такое объединение, называемое энергосистемой, дает возможность распределять нагрузки потребления энергии.
Энергосистема обеспечивает бесперебойность подачи энергии потребителям.
Сейчас в нашей стране действует Единая энергетическая система европейской части страны.

Использование электроэнергии

Потребность в электроэнергии постоянно увеличивается как в промышленности, на транспорте, в научных учреждениях, так и в быту. Удовлетворить эту потребность можно двумя основными способами.

Первый — строительство новых мощных электростанций: тепловых, гидравлических и атомных.
Однако строительство крупной электростанции требует нескольких лет и больших затрат.
Кроме того, тепловые электростанции потребляют невозобновляемые природные ресурсы: уголь, нефть и газ.
Одновременно они наносят большой ущерб равновесию на нашей планете.
Передовые технологии позволяют удовлетворить потребности в электроэнергии другим способом.

Читайте также  Устройство ручного лобзика

Второй — эффективное использование электроэнергии: современные люминесцентные лампы, экономия освещения.

Большие надежды возлагаются на получение энергии с помощью управляемых термоядерных реакций.

Приоритет должен быть отдан увеличению эффективности использования электроэнергии, а не повышению мощности электростанций.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Производство, передача и использование электрической энергии. Физика, учебник для 11 класса — Класс!ная физика