Основные способы проверки исправности стабилитрона

Основные способы проверки исправности стабилитрона

Несколько работающих способов, как проверить стабилитрон на исправность. Технология проверки стабилитрона мультиметром, транзистор-тестером и другими приборами.

Полупроводниковый прибор, называемый стабилитроном, является основным элементом стабилизированного блока питания. Он обеспечивает постоянный уровень напряжения. Однако, во время работы, по тем или иным причинам он может выходить из строя. Специалисту, выполняющему ремонтные работы необходимо знать, как проверить стабилитрон на исправность, или как его еще называют —диод Зенера.

Схема простейшего метода проверки напряжения стабилитрона

Радиолюбители и все те, кто хорошо дружит с электроникой знают, что задача нахождения стабилитрона с нужными характеристиками (рабочим напряжением) скучная и кропотливая. Случается, что нужно перебрать очень много разных экземпляров, пока не найдётся нужное значение Vz. Проверка состояния стабилитрона обычно делается с помощью обычной шкалы мультиметра для измерения диодов, этот тест дает нам точное представление о состоянии компонента, но не дает нам определить значение Vz. В общем тестер стабилитронов это действительно удобный прибор, когда мы хотим быстро выяснить значение напряжения Vz.

Частные случаи

Иногда, мультиметр при проверке исправного полупроводника в режиме измерения сопротивления при обратной полярности показывает значение сильно отличающееся от ожидаемого.

Вместо сотен килоом – сотни ом. Создается впечатление, что он пробит, и прозванивается в обе стороны.

Это возможно в случае использования в мультиметре внутреннего источника питания, превышающего напряжение стабилизации стабилитрона.

Полупроводник уменьшает свое внутреннее сопротивление до тех пор, пока не достигнет напряжения стабилизации. Поэтому при измерениях необходимо это учитывать.

Иногда, при прозвонке мультиметр показывает большое сопротивление при прямом и обратном потенциале. Скорее всего, это двуханодный стабилитрон, поэтому для него полярность значения не имеет.

Для проверки исправности потребуется приложить напряжение чуть больше стабилизирующего, при этом менять полярность. Измеряя токи, проходящие через него и сравнивая вольтамперные характеристики прибора можно выяснить состояние устройства.

Проверка диода Зенера на печатной плате затруднена влиянием других элементов. Для надежного контроля работоспособности необходимо выпаять один вывод, производить измерения вышеописанным способом.

Как проверить стабилитрон мультиметром на плате

Когда нет возможности освободить оба вывода элемента для измерений, как проверить стабилитроны? Желательно выпаять хотя бы одну из ножек (выводов) полупроводникового прибора. Таким образом разорвать цепь схемы на плате, куда впаян полупроводник. Это позволит избежать искажение показаний при измерениях. Неточность может возникнуть от влияния других элементов, входящих в схему. Кроме того, нужно обесточить плату, на которой находится проверяемый элемент.

Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.

Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.

Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:

где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения. Здесь все элементарно и просто:

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл 😉

Итак, собираем схемку. Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем блок питания, а справа замеряем мультиметром полученное напряжение:

Теперь внимательно следим за показаниями мультиметра и блока питания:

Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт! Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.

Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне 5,17 Вольт! Изумительно!

Еще добавляем… Входное напряжение 20 Вольт, а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.

Измерение по схеме стабилизатора

Этот способ позволяет провести замеры параметров радиоэлементов путём включения их в схему и приложенного напряжения источника питания. В зависимости от напряжения стабилизации проверяемого компонента, необходимо иметь делитель состоящего из одного и более резисторов. Источник питания подключается непосредственно к заранее собранной электрической схеме, включённой с общим минусом или общим плюсом. Эта схема является параметрическим стабилизатором напряжения:

  1. Рассмотрим включение схемы в общим минусом. Положительный провод источника питания присоединяется к выводу 1 делителя которым служит резистор R, а испытуемый стабилитрон подключается катодом к выводу 2 резистора R. Анодный вывод стабилитрона соединён с минусовым выводом источника питания и является общей шиной питания. Резистор делителя выбирается таким образом, чтобы приложенное напряжение от источника питания достигло такого уровня, что позволит на выводе 2 резистора получить ток пробоя стабилитрона, при котором он откроется.
  2. Мультиметр переключается в режим измерения постоянного напряжения, после чего плюсовой вывод вольтметра соединяется к выводу 2 резистора, а минусовый вывод подключён к общей шине, это минус источника питания+анод испытываемого элемента. Источник питания желательно иметь с плавной регулировкой, что придаёт этому способу возможность осуществлять испытание широкого спектра стабилизируемых напряжений.

На примере рассмотрим диод Зенера со стабилизацией 12 В. Для этого необходимо приложить напряжение таким образом, чтобы на выводе 1 делителя оно составляло около 11 В, при сопротивлении делителя выбранным примерно 100Ом. Вольтметр на выводе 2 резистора (без нагрузки). Напряжение перед делителем и после него остаётся неизменным, в зависимости от выбранного сопротивления. Если на вывод 1 делителя приложить выше 12 В или выше, то при этом на выходе делителя вывода второе напряжение не должно превышать 12 В, что указывает на его исправность.

Делитель R выбирается таким образом, чтобы ток источника на выводе 2 не превышал максимальный ток стабилитрона, что чревато выходом из строя последнего.

Если же исследуемый элемент является пробитым или неправильно включен в схему, то напряжение на вольтметре равняется нулю, а также произойдёт нагрев делителя. Если же элемент в обрыве, то приложенная величина на входе делителя, будет выше чем 12 В, то испытываемый элемент можно считать неисправным.

Мощность рассеивания стабилитрона

Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения и :

Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.

Читайте также  Что такое варистор

Принцип работы стабилитрона

Уважаемый читатель на этом рисунке изображен принцип работы стабилитрона.

Представь, что в некую емкость заливают воду, уровень воды в емкости, должен быть строго определенным, для того чтобы емкость не переполнилась в ней сделана переливная труба по которой вода превышающая заданный уровень будет выливаться из емкости.

Теперь от “сантехники” перейдем к электронике.

Обозначение стабилитрона на принципиальной схеме такое – же, как и у диода, отличие “черточка” катода изображается как буква Г.

Схема пробника для проверки микросхемы КРЕН

Эта схема уступает предыдущей компоновке.

Конденсатор С1 удаляет генерацию при ступенчатом подключении входного напряжения, а емкость С2 предназначена для защиты от импульсных помех. Величину ее берем 100 микрофарад, напряжение по величине стабилизатора напряжения. Диод 1N 4148 не дает возможность конденсатору разрядиться. Входное напряжение стабилизатора должно превышать напряжение выхода на 2,5 В. Нагрузку следует выбирать в соответствии с тестируемым стабилизатором.

Остальные элементы пробника выглядят следующим образом:

Контактные площадки стали местом монтажа элементов схемы. Корпус получился компактным.

На корпусе установили кнопку питания для удобства пользования. Штыревой контакт пришлось доработать путем изгибания.

На этом пробник готов. Он является своеобразной приставкой к мультиметру. Вставляем в гнезда штыри пробника, границу измерения устанавливаем на 20 В, провода соединяем с блоком питания, регулируем напряжение на 15 В и нажимаем кнопку питания на пробнике. Прибор сработал, на экране отображается 9,91 вольта.