Жесткость пружины

Жесткость пружины. Как рассчитать.

Измерение параметров жесткости пружин разных типов

При производстве на предприятии и для применения необходимо определить способность пружины выдерживать определенные типы нагрузок. Для этого высчитывается т.н. коэффициент Гука – обозначение жесткости пружины, от которого зависит её надёжность. На этот параметр влияет материал, выбранный для изготовления. Это может быть сталь, легированная кремнием, ванадием, марганцем, другими добавками. Также применяются нержавейка, бериллиевая и кремнемарганцевая бронза, сплавы на основе никеля и титана.

Если деталь выпускается для применения при высоких нагрузках, экстремальных температурах, используются специальные марки легированной стали. Нижегородская метизная корпорация имеет возможность производить пружины под заказ, создавая изделия с заданными характеристиками.

Что такое жесткость?

Говоря о практике, а не физических терминах, это сила, приложив которую, можно сжать пружину. Если вы знаете прилагаемое усилие, можно определить, какой будет деформация, и наоборот. Это существенно облегчает вычисления.

Коэффициент высчитывается для пружин кручения, растяжения, изгиба, сжатия – всех наиболее популярных в промышленности разновидностей этого изделия. Также следует отметить два основных типа:

  • С линейной (постоянной) жесткостью;
  • С прогрессивной (зависящей от положения витков) жесткостью.

Часто производитель наносит на готовую продукцию пометку краской. Если такого обозначения нет, применяется формула определения жесткости пружины через массу и длину, упрощающая задачу. Она изначально разрабатывалась для пружин растяжения, была получена методом измерения соответствия массы грузы с изменениями геометрии.

Также данный параметр может быть прогрессирующим – растущим — или регрессирующим – убывающим. Во втором случае параметр «жесткости» принято называть «мягкостью». В отдельных механизмах, например, в автомобилестроении, этот параметр особенно актуален.

Какие вводные данные требуются?

При расчёте важно знать следующую информацию:

  • Из какого материала выполнено изделие;
  • Точный диаметр витков – Dw;
  • Общий диаметр самой пружины – Dm;
  • Количество витков – Na.

Таким образом, к коэффициенту жесткости пружинного механизма может применяться формула:

k=G*(Dw)^4/8 * Na * (Dm)^3.

Переменная G означает модуль сдвига. Это значение можно найти в таблицах для разных материалов. К примеру, у пружинной стали G=78,5 ГПа.

Далее разберемся, как определить жесткость пружины по формуле:

Длина L бывает двух типов:

  • L1 – измеренная в вертикальном положении без груза;
  • L2 – полученная при подвешивании груза с точно известной массой.

Например, 100-граммовая гиря, закреплённая в нижней части, воздействует с силой F, равной 1 Н. Получаем разницу между двумя показателями длины:

При этом следует уточнить, что степень жесткости не определяет распрямление в исходное состояние. На него воздействуют сразу несколько факторов.

Насколько важен показатель, и на что он влияет?

Характеристики пружины важны не только для соответствия ГОСТам и проведения сертификации. Они влияют на сроки эксплуатации изделий, в которых используются, а это огромное количество приборов, деталей, механизмов, от мебели, до различных транспортных средств.

Поэтому данная величина напрямую влияет на надёжность готовых изделий, оборудования, техники, в которых используются элементы, содержащие пружины.

Часто люди интересуются, как рассчитать жесткость пружины цилиндрической винтовой. Для таких случаев учитывается не только модуль сдвига, но и параметр Rs – напряжение, допускаемое при кручении. Здесь в расчёт берётся тип материала, его физические свойства, механические характеристики.

Следующий вопрос – в чем измеряется коэффициент жесткости пружины при расчётах. Традиционно в системе измерений, принятой в нашей стране принято записывать значение в Н/м – ньютонах на один метр. Также это значение в качестве альтернативного варианта может записываться в килограммах на квадратный сантиметр, дин/см, граммах на квадратный сантиметр (расчёты в системе СГС).

Упругие свойства пружин используются в приборах для измерения силы. Обычно динамометр состоит из двух основных частей: пружины (упругий элемент) и шкалы устройства, на которой нанесены цифровые значения силы или массы, если этот прибор предназначен для бытового применения. Измеряемое усилие прикладывается к пружине, которая деформируется и сдвигает стрелку прибора вдоль отсчетной шкалы.

Рис. 3. Пружинные динамометры.

Хотя закон Гука и считается универсальным, но диапазон деформаций в котором он выполняется сильно отличается для разных тел. Например, в металлических проволоках (прямолинейных) и стержнях максимальная величина относительной деформации (отношение Δх к L), для которой еще будет справедлив закон Гука, составляет не более 1%. При больших деформациях наступают необратимые разрушения материалов.

Виды пружин

Видов этих деталей существует много, самыми распространенными являются пружины растяжения и сжатия.

  • Первые из них без нагрузки имеют нулевой шаг, то есть виток соприкасается с витком. В процессе деформации они растягиваются, их длина увеличивается. Прекращение нагрузки сопровождается возвращением в первоначальную форму – опять витком к витку.
  • Вторые – наоборот, изначально навиваются с определенным шагом между витками, под нагрузкой сжимаются. Соприкосновение витков является естественным ограничителем для продолжения воздействия.

Изначально именно для пружины растяжения было найдено соотношение массы подвешенного на ней груза и изменения ее геометрического размера, которое и стало основой для формулы жесткости пружины через массу и длину.

Какие еще бывают виды пружин

Зависимость деформации от прилагаемой внешней силы справедлива и для других видов упругих деталей: кручения, изгиба, тарельчатых, других. Не важно, в какой плоскости к ним прилагаются усилия: в той, где расположена осевая линия, или перпендикулярной к ней, производимая деформация пропорциональна усилию, под воздействием которого она произошла.

Вычисление коэффициента жесткости опытным методом

С помощью несложного опыта можно самостоятельно рассчитать, чему будет равен коэффициент Гука. Для проведения эксперимента понадобятся:

  • линейка;
  • пружина;
  • груз с известной массой.

Последовательность действий для опыта такова:

  1. Необходимо закрепить пружину вертикально, подвесив ее к любой удобной опоре. Нижний край должен остаться свободным.
  2. При помощи линейки измеряется ее длина и записывается как величина x1.
  3. На свободный конец нужно подвесить груз с известной массой m.
  4. Длина пружины измеряется в нагруженном состоянии. Обозначается величиной x2.
  5. Подсчитывается абсолютное удлинение: x = x2-x1. Для того чтобы получить результат в международной системе единиц, лучше сразу перевести его из сантиметров или миллиметров в метры.
  6. Сила, которая вызвала деформацию, — это сила тяжести тела. Формула для ее расчета — F = mg, где m — это масса используемого в эксперименте груза (переводится в кг), а g — величина свободного ускорения, равная приблизительно 9,8.
  7. После проведенных расчетов остается найти только сам коэффициент жесткости, формула которого была указана выше: k = F/x.

Какую жесткость имеет пружина

При выборе готовых пружин, например для подвески автомобиля, определить, какую жесткость она имеет, можно по коду продукта либо по маркировке, которая наносится краской. В остальных случаях расчет жесткости производится исключительно экспериментальными методами.

Жесткость пружины по отношению к деформации бывает величиной переменной или постоянной. Изделия, жесткость которых при деформации остается неизменной называются линейными. А те, у которых есть зависимость коэффициента жесткости от изменения положения витков, получили название «прогрессивные».

В автомобилестроении в отношении подвески существует следующая классификация жесткости пружин:

  • Возрастающая (прогрессирующая). Характерна для более жесткого хода автомобиля.
  • Уменьшающаяся (регрессирующая) жесткость. Напротив, обеспечивает, «мягкость» подвески.
Читайте также  Круг для полировки металла

Определение величины жесткости зависит от следующих исходных данных:

  • Тип сырья, используемый при изготовлении;
  • Диаметр витков металлической проволоки (Dw);
  • Диаметр пружины (в расчет берется средняя величина) (Dm);
  • Число витков пружины (Na).

Кинетическая энергия

Движущееся тело характеризуется скалярной величиной (масса) и векторная величина (скорость). Если рассматривать реальное перемещение в пространстве, то можно записать уравнение для определения кинетической энергии:

здесь v – скорость движения тела, м/с.

Использование кинетического преобразования можно наблюдать при колке орехов.

Приподняв камень повыше, далекие предки создавали необходимый потенциал для тяжелого тела.

Приподняв камень на максимальную высоту, разрешают ему свободно падать.

Двигаясь с высоты h, он набирает скорость

Поэтому в конце падения будет получена кинетическая энергия

Рассматривая входящие величины, можно увидеть, как происходит преобразование величин. В конце получается расчетная формула для определения потенциальной энергии.

Даже на уровне вывода зависимостей можно наблюдать выполнение закона сохранения энергии твердого тела.

Деформация.

Силы упругости возникают при деформациях тел. Деформация — это изменение формы и размеров тела. К деформациям относятся растяжение, сжатие, кручение, сдвиг и изгиб.
Деформации бывают упругими и пластическими. Упругая деформация полностью исчезает после прекращения действия вызывающих её внешних сил, так что тело полностью восстанавливает форму и размеры. Пластическая деформация сохраняется (быть может, частично) после снятия внешней нагрузки, и тело уже не возвращается к прежним размерам и форме.

Частицы тела (молекулы или атомы) взаимодействуют друг с другом силами притяжения и отталкивания, имеющими электромагнитное происхождение (это силы, действующие между ядрами и электронами соседних атомов). Силы взаимодействия зависят о расстояний между частицами. Если деформации нет, то силы притяжения компенсируются силами отталкивания. При деформации изменяются расстояния между частицами, и баланс сил взаимодействия нарушается.

Например, при растяжении стержня расстояния между его частицами увеличиваются, и начинают преобладать силы притяжения. Наоборот, при сжатии стержня расстояния между частицами уменьшаются, и начинают преобладать силы отталкивания. В любом случае возникает сила, которая направлена в сторону, противоположную деформации, и стремится восстановить первоначальную конфигурацию тела.

Сила упругости — это сила, возникающая при упругой деформации тела и направленная в сторону, противоположную смещению частиц тела в процессе деформации. Сила упругости:

1. действует между соседними слоями деформированного тела и приложена к каждому слою;
2. действует со стороны деформированного тела на соприкасающееся с ним тело, вызывающее деформацию, и приложена в месте контакта данных тел перпендикулярно их поверхностям (типичный пример — сила реакции опоры).

Силы, возникающие при пластических деформациях, не относятся к силам упругости. Эти силы зависят не от величины деформации, а от скорости её возникновения. Изучение таких сил
выходит далеко за рамки школьной программы.

В школьной физике рассматриваются растяжения нитей и тросов, а также растяжения и сжатия пружин и стержней. Во всех этих случаях силы упругости направлены вдоль осей данных тел.

Закон Гука

При упругой деформации есть взаимосвязь между силой упругости, возникающей в результате деформации, и удлинением деформируемого тела. Эту взаимосвязь первым обнаружил английский ученый Роберт Гук.

Модуль силы упругости, возникающей при деформации тела, пропорционален его удлинению.

x — абсолютное удлинение (деформация), k — коэффициент жесткости тела.

Абсолютное удлинение определяется формулой:

l — начальная длина тела, l — длина деформированного тела, ∆l — изменение длины тела.

Коэффициент жесткости тела определяется формулой:

E — модуль упругости (модуль Юнга). Каждое вещество обладает своим модулем упругости. S — площадь сечения тела.

Важно! Закон Гука не работает в случае, если деформация была пластической.

Пример №1. Под действием силы 3Н пружина удлинилась на 4 см. Найти модуль силы, под действием которой удлинение пружины составит 6 см.

Согласно третьему закону Ньютона модуль силы упругости будет равен модулю приложенной к пружине силе. В обоих случаях постоянной величиной окажется только жесткость пружины. Выразим ее из закона Гука и применим к каждому из случаев:

Приравняем правые части формул:

Выразим и вычислим силу упругости, возникающую, когда удлинение пружины составит 6 см:

Расчет цилиндрических винтовых пружин

В технике наиболее распространены цилиндрические винтовые пружины из стали круглого поперечного сечения, работающие на растяжение или сжатие. Покажем порядок расчета такой пружины, имеющей небольшой угол подъема витков ( α ≤1 5°).

В качестве примера рассмотрим цилиндрическую винтовую пружину с диаметром D винтовой оси, диаметром d проволоки, числом витков n , сжимаемую силой F (рис. 5) .

Для определения внутренних силовых факторов применим известный нам метод сечений. Рассечем пружину плоскостью, проходящей через ось, и отбросим нижнюю часть пружины. Ввиду того, что угол α подъема витков мал, будем считать сечение витка поперечным, т. е. кругом диаметром d .

Рассматривая равновесие верхней части пружины (рис. 6) , видим, что в поперечном сечении витка возникают два внутренних силовых фактора:
— поперечная сила Q = F
— крутящий момент МКР = FD / 2 .
Отсюда следует, что в поперечном сечении витка пружины действуют только касательные напряжения сдвига и кручения.

Будем считать, что напряжения сдвига распределены по сечению равномерно, а напряжения кручения определяются, как при кручении прямого кругового цилиндра.
Эпюры распределения напряжений сдвига и кручения, а также эпюра суммарных напряжений в точках горизонтального диаметра сечения представлены на рис. 6 .

Из суммарной эпюры видно, что наибольшие касательные напряжения возникают в точке В , ближайшей к оси пружины:

τmax = τсдв + τкр = Q / S + Мкр / Wр = F / (πD 3 / 4) + (FD / 2) / πd 3 / 16) ,

τmax = (8FD / πd 3 ) / (d / 2D + 1) .

Если пружина имеет относительно большой средний диаметр и изготовлена из относительно тонкой проволоки, то первое слагаемое в скобках (соответствующее напряжению сдвига) значительно меньше единицы и в практических расчетах им можно пренебречь; тогда:

Для приближенного расчета цилиндрических пружин на прочность применяется формула:

Поскольку пружины обычно изготавливают из высококачественной стали, допускаемое напряжение принимают равным в пределах [τ] = 200….1000 МПа.

Расчет осадки цилиндрической пружины

Далее выведем формулу для определения уменьшения высоты (осадки) λ пружины. Для этого мысленно разобьем пружину на бесконечно малые участки длиной dl , которые ввиду малости длины будем считать прямолинейными, и учитывая только потенциальную энергию деформации кручения, получим:

где l = πDn длина проволоки пружины.

Работа силы F , приложенной к пружине статически, будет равна W = Fλ / 2 .
Так как W =U , то Мкр = FD / 2 , следовательно Ip = πd 4 / 32 , тогда получаем:

Fλ / 2 =[(Fλ / 2) 2 πDn] / (2G πd 4 / 32) , откуда: λ = 8 FD 3 n / (Dd 4 ) .

Эту формулу можно записать в таком виде:
λ = F / С ,
где: С = Gd 4 / 8D 3 n – коэффициент жесткости пружины.
При λ = 1, С = F , поэтому коэффициент жесткости численно равен силе, вызывающей осадку, равную единице длины.
Отношение среднего диаметра витков к диаметру проволоки обозначают Сn и называют индексом пружины :

Обычно индекс пружин равен Сn = 4….12 .

При более точных расчетах винтовых пружин учитывают кривизну их витков и вводят в числитель формулы (1) поправочный коэффициент К ≈ 1 + 1,45 / Cn .

Пример расчета цилиндрической пружины

Определить диаметр проволоки стальной пружины, если под действием силы F = 800 Н ее осадка λ = 39 мм.
Индекс пружины Сn = 6, число витков n = 14.
Модуль упругости стали пружины G = 8 х 10 4 Мпа, допускаемое напряжение [τ] = 450 МПа.

Решение.

Используя формулу для определения индекса пружины Сn = D / d , получим: D = Сn d . Подставляем это значение D в формулу для определения осадки пружины:

Читайте также  Чем отличается чугун от стали

λ = 8 FD 3 n / (Dd 4 ) = 8 FD 3 n / (Gd 4 ) = 8 F Сn 3 d 3 n / (Gd 4 ), откуда найдем d и после подстановки числовых значений получим:

d = 8 F Сn 3 n / λ G = 8 х 800 х 106 х 14 / 39 х 10 -3 х 8 х 104 х 106 = 7 х 10 -3 м = 7 мм.

Итак, диаметр проволоки цилиндрической пружины должен быть не менее 7 мм, а средний диаметр самой пружины D = Сn d = 6 х 7 = 42 мм.