Принцип работы симисторных регуляторов мощности

Принцип работы симисторных регуляторов мощности

Полупроводниковый прибор, имеющий 5 p-n переходов и способный пропускать ток в прямом и обратном направлениях, называется симистором. Из-за неспособности работы на высоких частотах переменного тока, высокой чувствительности к электромагнитным помехам и значительного тепловыделения при коммутации больших нагрузок, в настоящее время широкого применения в мощных промышленных установках они не имеют.

Сегодня схемы на симисторах можно найти во многих бытовых приборах от фена до пылесоса, ручном электроинструменте и электронагревательных устройствах – там, где требуется плавная регулировка мощности.

  • Принцип работы ↓
  • Делаем своими руками ↓
  • Схема прибора ↓
  • Сборка ↓
  • Регулировка мощности ↓
  • Блиц-советы ↓

Конструкция и принцип действия

Особенность симистора является двунаправленной проводимости идущего через прибор электрического тока. Конструкция устройства строится на использовании двух встречно-параллельных тиристоров с общим управлением. Такой принцип работы дал название от сокращенного «симметрические тиристоры». Поскольку электроток может протекать в обе стороны, нет смысла обозначать силовые выводы как анод и катод. Дополняет общую картину управляющий электрод.

Условное обозначение на схеме по ГОСТ:

Внешний вид следующий:

В симисторе есть пять переходов, позволяющих организовать две структуры. Какая из них будет использоваться зависит от места образования (конкретный силовой вывод) отрицательной полярности.

Как работает симистор? Исходно полупроводниковый прибор находится в запертом состоянии и ток по нему не проходит. При подаче тока на управляющий электрод, последний переходит в открытое состояние и симистор начинает пропускать через себя ток. При работе от сети переменного тока полярность на контактах постоянно меняется. Схема, где используется рассматриваемый элемент, при этом будет работать без проблем. Ведь ток пропускается в обоих направлениях. Чтобы симистор выполнял свои функции, на управляющий электрод подают импульс тока, после снятия импульса ток через условные анод и катод продолжает протекать до тех пор, пока цепь не будет разорвана или они не будут находится под напряжением обратной полярности.

При использовании в цепи переменного тока симистор закрывается на обратной полуволне синусоиды, тогда нужно подавать импульс противоположной полярности (той же, под которой находятся «силовые» электроды элемента).

Принцип действия системы управления может корректироваться в зависимости от конкретного случая и применения. После открытия и начала протекания подавать ток на управляющий электрод не нужно. Цепь питания разрываться не будет. При надобности отключить питание следует понизить ток в цепи ниже уровня величины удержания или кратковременно разорвать цепь питания.

Электронные ключи

В настоящее время применяются следующие типы:

  • Ключи на биполярных транзисторах;
  • Ключи на полевых транзисторах;
  • Ключи на управляемых диодах — тиристорах;
  • Ключи на симметричных управляемых диодах — симисторах.

Рассмотрим подробно каждый из типов:

На транзисторах

Простейшим электронным ключом является биполярный транзистор. Как известно, биполярный транзистор имеет структуру n-p-n или р-n-p с двумя p-n переходами и тремя выводами: эмиттер, база и коллектор.

Если ток базы отсутствует, ток коллектора равен нулю. Транзистор находится в состоянии отсечки. Это соответствует разомкнутому состоянию.

Если в базу подать ток достаточной величины, транзистор войдет в насыщение, и напряжение на коллекторе будет близко к нулю, независимо от тока коллектора. Это соответствует замкнутому состоянию.

До появления полевых транзисторов ключи на биполярных транзисторах были основой всей полупроводниковой схемотехники.

В полевых транзисторах между выводами стока и истока существует проводящий канал n или р типа. К этому каналу через диэлектрический слой окисла подключен управляющий электрод — затвор. Меняя напряжение на затворе, можно воздействовать на ширину проводящего канала и тем самым менять его проводимость. Управляя затвором, можно переводить ключ в открытое и закрытое состояние.

Ключи на полевых транзисторах превосходят ключи на биполярных по быстродействию, поскольку биполярные транзисторы медленно выходят из режима насыщения.

Сегодня все компьютеры, смартфоны и прочие гаджеты собраны на комплиментарных (то есть разнополярных) МОП транзисторах. В быстродействующей силовой электронике также применяются мощные полевые транзисторы.

На тиристорах

Если добавить к структуре биполярного транзистора еще один p-n переход, можно получить прибор с очень интересными свойствами — управляемый диод, или тиристор.

Тиристор — это полупроводниковый прибор со структурой p-n-p-n или n-p-n-p. Он имеет три или реже четыре вывода. Вывод, подключенный к внешнему слою p, называется анод, к внешнему слою n — катод. Управляющий электрод, называемый базой, подключается к одному из внутренних слоев, обычно к тому, который примыкает к катоду. Тиристор может иметь и две базы, но это не принципиально.

Эта структура эквивалентна соединению двух, транзисторов с разным типом проводимости, показанному на рисунке.

Это два транзисторных ключа, включенных навстречу друг другу. База каждого из транзисторов подключена к коллектору другого. Эта схема напоминает триггер — элемент с памятью. Если подать в базу отпирающий ток, то тиристор откроется, но из-за эффекта памяти останется в этом состоянии до тех пор, пока ток через него не снизится практически до нуля.

У тиристора очень необычная вольт-амперная характеристика. Она имеет S — образную форму.

Характеристика показывает зависимость тока через тиристор от напряжения между анодом и катодом при различных значениях тока базы IG. Напряжение Vbo соответствует напряжению включения тиристора. Vbr соответствует напряжению пробоя.

При достаточно большом токе базы тиристор ведет себя как диод. Иногда тиристор называют управляемым диодом, что соответствует его графическому обозначению на схемах. Тиристор проводит ток в одном направлении.

Регулятор мощности на симисторе

Симистор, по большому счету, — это частный случай тиристора, пропускающий ток в обе стороны, при условии, что он выше тока удержания. Один из его недостатков — это плохая работа на высоких частотах. Поэтому его часто используют в низкочастотных сетях. Для построения регулятора мощности на основе обычной сети 220 В, 50 Гц он вполне подходит.

Регулятор напряжения на симисторе используется в обычных бытовых приборах, где нужна регулировка. Схема регулятора мощности на симисторе выглядит следующим образом.

  • Пр. 1 — предохранитель (выбирается в зависимости от требуемой мощности).
  • R3 — токоограничительный резистор — служит для того чтобы при нулевом сопротивлении потенциометра остальные элементы не выгорели.
  • R2 — потенциометр, подстроечный резистор, которым и осуществляется регулировка.
  • C1 — основной конденсатор, заряд которого до определённого уровня отпирает динистор, вместе с R2 и R3 образует RC-цепь
  • VD3 — динистор, открытие которого управляет симистором.
  • VD4 — симистор — главный элемент, производящий коммутацию и, соответственно, регулировку.

Основная работа возложена на динистор и симистор. Сетевое напряжение подаётся на RC-цепочку, в которой установлен потенциометр, им в итоге и регулируется мощность. Производя регулировку сопротивления, мы меняем время зарядки конденсатора и тем самым порог включения динистора, который, в свою очередь, включает симистор. Демпферная RC-цепь, подключённая параллельно симистору, служит для сглаживания помех на выходе, а также при реактивной нагрузке (двигатель или индуктивность) предохраняет симистор от скачков высокого обратного напряжения.

Читайте также  Как снимать показания счетчика электроэнергии день ночь

Симистор включается, когда ток, проходящий через динистор, превышает ток удержания (справочный параметр). Отключается, соответственно, когда ток становится меньше тока удержания. Проводимость в обе стороны позволяет настроить более плавную регулировку, чем это возможно, например, на одном тиристоре, при этом используется минимум элементов.

Осциллограмма регулировки мощности представлена ниже. Из неё видно, что после включения симистора оставшаяся полуволна поступает на нагрузку и при достижении 0, когда ток удержания уменьшается до такой степени, что симистор отключается. Во втором «отрицательном» полупериоде происходит тот же процесс, т. к. симистор обладает проводимостью в обе стороны.

Что такое симистор и как используется

Любая электроника основана на комплексе различного рода элементов, которые обеспечивают функционирование электроприборов. Симистор – один из необходимых микроприборов. Смотрите обзор видов светодиодных фитоламп для рассады растений здесь: https://howelektrik.ru/osveshhenie/lampy/svetodiodnye-fitolampy-dlya-rassady-rastenij-obzor-vidov-i-kak-vybrat.html.

На фото представлены симисторы

Что это такое?

Симистор – полупроводниковый прибор, получивший свое названия от слов СИМетричный тирИСТОР. Изобретен в СССР, на одном из заводов, и запатентован на полгода раньше, чем в США.

Принцип работы

Принцип работы симистора основан на обеспечении проходимости электрического тока в обоих направлениях, а не в одном, как в тиристоре. Одним из несомненных преимуществ симистора является и тот факт, что для обеспечения проходного канала не требуется наличие постоянного уровня напряжения на управляющем ключе. Достаточно лишь наличие его не выше определенного уровня, в зависимости от применения.

Виды симисторов

Говоря о видах симисторов, следует принять тот факт, что это симистор является одним из видов тиристоров. Когда имеются в виду различия по работе, то и тиристор можно представить своего рода разновидностью симистора. Различия касаются лишь по управляющему катоду и в разных принципах работы этих тиристоров. Читайте что такое импульсный блок питания.

Импортные симисторы широко представлены на отечественном рынке. Их основное отличие от отечественных симисторов заключается в том, что они не требуют предварительной настройки в самой схеме, что позволяет экономить детали и место на печатной плате. Как правило, они начинают работать сразу после включения в схему. Следует лишь точно подобрать необходимый симистор по всем требуемым характеристикам.

  • На замену Z00607 хорошо подходят ы BT131-600, только они максимально подходят по всем характеристикам

На снимке BT131-600

m2lz47 представлен ан фото

На снимке представлен тс122 25

Схемы управления

Схемы управления симистором отличаются простотой и надежностью. Там, где без применения симисторов требовалось большое количество деталей, и производилась тщательная подгонка по параметрам – симисторы значительно упростили всю принципиальную схему. Включение в схему только основных элементов позволяет миниатюризировать не только саму печатную плату, но и весь прибор в целом. Читайте принцип работы индикаторной отвертки.

Схема управления симистором на рисунке

Схема диммера на симисторе

Схемы управления скоростью вращения двигателя принципиально ничем не отличаются по принципу построения от других аналогичных. Нюансы касаются только параметров тока и напряжения на двигатель.

Управление симистором через оптопару позволяет подключать электрооборудование, которым нужно управлять. Непосредственно к компьютеру через порт LPT. Оптопара в данном примере позволяет защитить непосредственно материнскую плату компьютера от перегрузки и выхода из строя. Своего рода умны предохранитель с функцией управления.

Управление симистором через оптопару на схеме

Схема управления симистором с микроконтроллера на рисунке

Регулятор мощности

Регулятор мощности на симисторе обычно требует включения симистора в одну из ветвей выпрямителя, чтобы путем изменения импульсов питания двигателя добиться как можно маленьких промежутков в подаче питания на двигатель, чтобы не терялась мощность на низких оборотах.

Регулятор мощности на симисторе на схеме

Регулятор мощности на симисторе для индуктивной нагрузки — самая интересная ветвь применения симисторов. Проблема применения симисторов на индуктивной нагрузке заключается в том, что при многих диапазонах частот при подаче управляющего импульса сам симистор просто не успевает открыться. В итоге детали сгорают, эффекта ноль. Одна из очень немногих схем предлагает решение в посылке нескольких импульсов вместо одного.

Регулятор мощности на симисторе для индуктивной нагрузки на схеме

Использование

Симисторы применяются практически везде. Это и блоки питания, и регуляторы мощностей и напряжения в бытовых приборах, в аудио и видеотехнике, в самолето- и автомобилестроении.

Симисторный регулятор скорости не занимает много места, практические решения по использованию симистора в регуляторах различаются только показателями регулируемой скорости. Вследствие этого используются те или иные детали.

На снимке симисторный регулятор скорости

Симисторный регулятор напряжения на фото

Симисторный регулятор на вентилятор изображен на фото

Как проверить?

На фото проверка исправности симистора

Проверка исправности тиристора на снимке

Как проверить мультиметром?

Симистор проверяется следующим образом. Для этого нужно два стрелочных омметра. Один подключаем к аноду и катоду симистора, а второй присоединяем к одному из анодов одним щупом. На первом омметрепри рабочем синисторе будет наблюдаться сопротивление, стремящееся к бесконечности, но после присоединения второго щупа к управляющему электроду произойдет отпирание ключа и на первом приборе сопротивление моментально исчезнет. Ознакомиться с руководством как выбрать детектор скрытой проводки и как им пользоваться можно здесь.

Можно проверить симистор мультиметром не выпаивая, но управляющий электрод отсоединить все-таки нужно. При присоединении омметра к аноду и катоду будет отмечаться бесконечное сопротивление, но после кратковременного замыкания управляющего электрода к плате произойдет отпирание затвора симистора

На снимке проверка симистра мудьтиметром

Стоимость

Стоимость симисторов не высока, так как это уже далеко не деталь высоких технологий. Самые дорогие элементы из семейства симисторов стоят не дороже ста рублей за одну штуку.

Где купить симисторы?

Симисторы можно купить в лбом магазине, торгующим радиоэлектронными компонентами. Продаются как отечественные, так и импортные варианты полупроводников.

  1. Зао ЧИП и ДИП, ул. Перерва, д. 49 тел. +7 495 544-00-08 тел. 495-3472800
  2. Терра Электроника Москва, ул. Дербеневская, дом 1, Бизнес-парк «Дербеневский»,
    корп. 1, подъезд 23 тел.: (495) 221-78-03
  3. Чипрезистор ул. Большая Черёмушкинская, д.25, стр.97 тел.: 8(499)7-555-078
  1. ЗАО Atlas Electronic Group Серпуховскаяул., 18, оф.1А, тел.: +7 (812) 325-08-56
  2. Коломяжский пр., д. 26, тел.: +7 (812) 300-35-63;
  3. Трамвайный пр., д. 12 тел.: +7 (812) 377-17-25

Видео

Смотрите на видео как проверить симистор:

Симисторы – ключевые детали в современных полупроводниковых приборах, и без них многие бытовые приборы были бы несравненно больше и часто выходили бы из строя, а о точности их работы не могло вестись вообще никаких разговоров.

Симисторный регулятор мощности

Простой регулятор мощности для паяльника (лампы) на MAC97A

Простой регулятор мощности до 100Вт можно сделать всего из нескольких деталей. Его можно приспособить для регулирования температуры жала паяльника, яркости настольной лампы, скорости вентилятора и т.п. Регулятор на тиристоре получается по размерам сильно большой и конструктивно имеет недочеты и большую схему. Регулятор мощности на импортном малогабаритном симисторе mac97a (600В; 0,6А) можно коммутировать и более мощные нагрузки, простая схема, плавная регулировка, маленькие габариты.

Читайте также  Сварка алюминия электродом

Если у тиристора есть анод и катод, то электроды у симистора так охарактеризовать нельзя, потому что каждый электрод является и анодом и катодом одновременно. В отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Как раз простой схемой, характеризующей принцип работы симистора служит наш электронный регулятор мощности.

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса.

В данном случае изменяя управляющее напряжение мы можем регулировать яркость электрической лампочки или температуру жала паяльника, а также скорость вентилятора.

Принципиальная схема регулятора на симисторе MAC97A6

Описание работы регулятора мощности на симисторе

При каждой полуволне сетевого напряжения конденсатор С заряжается через цепочку сопротивлений R1, R2, когда напряжение на С становится равным напряжению открывания динистора VD1 происходит пробой и разрядка конденсатора через управляющий электрод VS1 .

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Диаграмма вольт-амперной характеристики (ВАХ) динистора DB3 изображена на рисунке:

Поскольку данный вид полупроводника является симметричным динистором (оба его вывода являются анодами), то нет разницы, как его подключать.

Характеристики динистора DB3

Кому нужно регулировать нагрузку более 100Вт, ниже представлена похожая схема более мощного регулятора на симисторе ВТ136-600.

Принципиальная схема регулятора на симисторе BT136-600

Приведенная схема регулятора мощности на симисторе рассчитана на достаточно большой ток нагрузки.

Если у Вас нет необходимых деталей и платы для сборки регулятора мощности на симисторе MAC97A6, Вы можете купить полный набор для его сборки в нашем магазине.

Управляющие сигналы

Чтобы добиться желаемого результата с симистором используют не напряжение, а ток. Чтобы прибор открылся, он должен быть на определённом небольшом уровне. Для каждого симистора сила управляющего тока может быть разной, её можно узнать из даташита на конкретный элемент. Например, для симистора КУ208 этот ток должен быть больше 160 мА, а для КУ201 —не менее 70 мА.

Полярность управляющего сигнала должна совпадать с полярностью условного анода. Для управления симистором часто используют выключатель и токоограничительный резистор, если он управляется микроконтроллером – может понадобиться дополнительная установка транзистора, чтобы не сжечь выход МК, или использовать симисторный оптодрайвер, типа MOC3041 и подобных.

Четырёхквадрантные симисторы могут отпираться сигналом с любой полярностью. В этом преимуществе есть и недостаток – может потребоваться увеличенный управляющий ток.

При отсутствии прибор заменяется двумя тиристорами. При этом следует правильно подбирать их параметры и переделывать схему управления. Ведь сигнал будет подаваться на два управляющих вывода.

Блоки управления силовыми симисторами и тиристорами ОВЕН БУСТ

Для управления выходным напряжением на нагрузках применяются регуляторы мощности. Регулятор мощности – это комплектное устройство, в котором совмещены силовые компоненты (тиристоры и симисторы) с управляющей частью. Полупроводниковые компоненты долговечны – не имеют ограничений по частоте коммутаций, и они по большей части остаются в рабочем состоянии на старых установках. К тому же их стоимость составляет большую часть цены регулятора мощности, поэтому приобретать готовые регуляторы мощности нецелесообразно, выгоднее выбирать управляющие блоки отдельно от силовых компонентов.

Компания ОВЕН в качестве управляющего устройства предлагает БУСТ, оставляя силовые компоненты на выбор потребителя. При таком варианте организации не придется поддерживать на складе широкую номенклатуру недешевых регуляторов мощности на случай аварийной или плановой замены управляющих компонентов, ТЭНов/трансформаторов. БУСТ обеспечивает точное регулирование мощности нагрузки, удобен в эксплуатации и имеет долгий срок службы.

ОВЕН БУСТ

Линейка ОВЕН БУСТ представлена двумя устройствами (табл. 1). Простой и бюджетный регулятор БУСТ позволяет управлять активной нагрузкой, в основном ТЭНами. Устройство зарекомендовало себя как надежное решение для простых задач.

Рис. 2. Подключение к БУСТ2 встречно включенных
тиристоров или симистора

Более сложный и универсальный регулятор БУСТ2 в удобном корпусном исполнении для крепления на DIN-рейку может управлять не только активной, но и активно-индуктивной нагрузкой. За счет применения специальной схемотехники БУСТ2 не требует специального подбора полупроводниковых вентилей. Он работает с любыми типами стержневых и таблеточных тиристоров/симисторов, а также силовых модулей, у которых постоянный ток отпирания не превышает 300 мА. Выходной импульсный ток управления БУСТ2 в затворы полупроводниковых вентилей достаточен для надежного отпирания в широком диапазоне температур: от -20 до +50 о С.

Рис. 3. Квадранты управления для тиристоров
​​​​и симисторов
(Uc – падение напряжения на вентиле,
IG – ток в затворе вентиля)

Основные функциональные возможности приборов БУСТ:

  • работа с одно-, двух- и трехфазной нагрузками;
  • простая настройка с помощью DIPпереключателей;
  • автоматическое регулирование мощности нагрузки поступающими сигналами (4…20 мА) от регулятора (ОВЕН ТРМ101, ТРМ10, ТРМ151);
  • ручное регулирование мощности потенциометром (10 значений);
  • два метода управления симисторами и тиристорами с учетом инерционности нагрузки и уровня помех в сети;
  • защита силовых компонентов от короткого замыкания и превышения номинального тока нагрузки с использованием внешних трансформаторов тока;
  • плавное увеличение мощности нагрузки для предотвращения резких перегрузок питающей сети (до 5 секунд);
  • светодиодная индикация режима работы и мощности (10 уровней от 0 до 100 %);
  • возможность внешней блокировки управления нагрузкой.

Рис. 4. Схемы подключения полупроводниковых вентилей VS и снабберных компонентов: Rs, Cs, VR к БУСТ2

Методы управления

Для регулирования мощности на нагрузке БУСТ формирует сигналы, управляющие тиристорами/симисторами, двумя методами: фазовым или по числу полупериодов (рис. 1). Выбор метода управления зависит от инерционности и характера нагрузки. При фазовом методе на входе БУСТа в зависимости от величины сигнала меняется угол открытия полупроводников. Прибор обеспечивает 256 уровней изменения угла открытия на один полупериод, что позволяет плавно изменять напряжение на нагрузке. Фазовый метод используется для управления малоинерционными объектами, быстро реагирующими на изменение напряжения на нагревателе, а также для управления освещением. Недостатком метода является относительно высокий уровень помех, так как переключение полупроводниковых элементов прои

Читайте также  Газовый шланг для плиты с электроподжигом

Рис. 5. Управление дуговой печью

сходит при значении сетевого напряжения отличном от нуля.

Метод управления по числу полупериодов позволяет значительно снизить уровень помех в электросети за счет включения и отключения нагрузки в момент перехода сетевого напряжения через ноль. Однако период следования управляющих сигналов с БУСТа составляет 256 целых полупериодов колебаний сетевого напряжения (2,56 с), из чего следует, что метод применим только для инерционных нагрузок. Количество полупериодов на выходе БУСТа, а значит мощность на нагрузке, зависит от величины сигнала на входе БУСТа: при максимальном уровне сигнала (100 %) на нагрузку подаются 256 полупериодов, при 50 % – 128, при минимальном уровне полупроводниковые элементы закрыты, и на нагрузку напряжение не поступает.

Защита силовых модулей

При возникновении короткого замыкания или превышении номинального тока нагрузки происходит аварийное отключение БУСТа, таким образом обеспечивается защита тиристоров/симисторов.

Для измерения тока на каждой фазе последовательно с нагрузкой устанавливается трансформатор, вторичная обмотка которого подключается к входу устройства контроля тока. При превышении порога происходит аварийное отключение и управление блокируется. Защитный уровень задается пользователем. В аварийном режиме мигают светодиоды, индицирующие уровень управляющего сигнала. Отключение питания прибора снимает аварийное состояние.

Управление

При автоматическом регулировании мощности сигнал с выхода регулятора подается на управляющий вход БУСТа. Вручную управлять симисторами/тиристорами можно с помощью потенциометра: внешнего (БУСТ), встроенного (БУСТ2).

Для управления вентилями используется выходное устройство – импульсный трансформатор с двумя вторичными обмотками, который позволяет подключать к каждому каналу либо симистор, либо два встречно включенных тиристора с управлением в импульсном режиме (рис. 2).

Прибор имеет функцию блокировки, позволяющую организовать аварийное или технологическое отключение нагрузки. На дискретный вход «Блокировка» подается внешний сигнал типа «сухой контакт». При снятии сигнала блокировки прибор плавно возвращается на заданный уровень мощности.

Требования к симисторам и тиристорам

В схемах регуляторов с блоком БУСТ2 используются полупроводниковые вентили общепромышленного исполнения током до 1000 А:

  • одноквадрантные – тиристоры;
  • трех-, четырехквадрантные – симисторы (триаки).

Квадранты управления тиристоров и симисторов приведены на рис. 3. Квадранты управления вентилями I, II, III и IV отражают все возможные сочетания полярностей напряжения на силовом переходе и токов в затворы вентилей. В зависимости от исполнения симистора или тиристора (квадранта) применяются разные схемы подключения к БУСТ силовых компонентов.

БУСТ обеспечивает эффективную работу по различным схемам подключения. Рабочий квадрант для конкретного типа симистора выбирается на основе рекомендаций производителя использующегося полупроводникового вентиля. Примеры схем подключения полупроводниковых вентилей VS и снабберных компонентов Rs, Cs, VR к БУСТ2 приведены на рис. 4. Рабочие режимы расположены в квадранте I – для тиристоров (схема 4 а, б), в квадрантах I и II – для симисторов (схема 4 в, г), в квадрантах III и IV – для симисторов (схема 4 д, е).

Применение БУСТ

БУСТ широко применяется в системах управления печами сопротивления для различных видов термической обработки металлов, при производстве изделий из керамики, металлокерамики, пластмасс в плавильных печах, в сушильных камерах для сушки древесины, лакокрасочных покрытий, обмазок сварочных электродов, эмалей и др. Регулирующая часть системы включает терморегулятор, БУСТ, силовые цепи коммутации и элементы защиты от перегрузок (рис. 5). В пищевой промышленности БУСТ применяется в хлебопекарнях и на сахарных заводах.

БУСТ2 рекомендован для систем управления как печами сопротивления, так и индукционными печами (канальными и тигельными). В цветной и черной металлургии – для плавки металлов и сплавов (плавильные печи), печах для переплава металлов перед разливкой. Также БУСТ2 может быть применен в системах управления дуговыми конвертерами для термообработки металлов в расплаве солей.

Таблица 1. Основные технические характеристики ОВЕН БУСТ и БУСТ2

Ограничения

При использовании симистора накладываются ограничения, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dU/dt) между основными электродами симистора и скорости изменения рабочего тока di/dt. Превышение скорости изменения напряжения на симисторе (из-за наличия его внутренней ёмкости), а также величины этого напряжения, могут приводить к нежелательному открыванию симистора. Превышение скорости нарастания тока между основными электродами, а также величины этого тока, может привести к повреждению симистора. Существуют и другие параметры, на которые накладываются ограничения в соответствии с предельно-допустимыми режимами эксплуатации. К таким параметрам относятся ток и напряжение управляющего электрода, температура корпуса, рассеиваемая прибором мощность и пр.

Опасность превышения по скорости нарастания тока заключается в следующем. Благодаря глубокой положительной обратной связи переход симистора в открытое состояние происходит лавинообразно, но, несмотря на это, процесс отпирания может длиться до нескольких микросекунд, в течение которых к симистору оказываются приложены одновременно большие значения тока и напряжения. Поэтому, даже несмотря на то, что падение напряжения на полностью открытом симисторе невелико, мгновенная мощность во время открывания симистора может достигнуть большой величины. Это сопровождается выделением тепловой энергии, которая не успевает рассеяться и может привести к перегреву и повреждению кристалла.

Одним из способов защиты симистора от выбросов напряжения при работе с индуктивной нагрузкой является включение варистора параллельно основным выводам симистора. Для защиты симистора от превышения скорости изменения напряжения применяют так называемую снабберную цепочку (RC-цепь), подключаемую аналогично.

Устойчивость симистора к разрушению при превышении допустимой скорости нарастания тока (dI/dt) зависит от внутреннего сопротивления и индуктивности источника питания и нагрузки [1] . При работе на емкостную нагрузку необходимо внести в цепь соответствующую индуктивность.