JK-триггер: схема, таблица истинности

JK-триггер: схема, таблица истинности

В радиоэлектронике существует множество механизмов и деталей, которые с помощью простейших операций позволяют создавать сложные машины. Правда, для такой цели их нужно очень много. И одним из важнейших механизмов подобного предназначения являются JK-триггеры. Они позволяют обеспечить машинную логику для выполнения простейших логических операций. Как это осуществляется? Как необходимо подключать JK-триггер? Как выглядит таблица истинности? На эти и другие вопросы можно будет найти ответы в рамках статьи.

Внутреннее устройство триггера

Не вдаваясь в глубину схемотехники триггера, скажу сразу, что простейший триггер представляет собой схему из двух логических элементов, взаимодействуя между собой с помощью положительной обратной связи, которая обеспечивает нахождения выходов триггера в одном их двух логических состояний неограниченное время.


Схема триггерной ячейки на логических элементах (RS триггер).

Схема на рисунке выше представляет простейший триггер (или триггерная ячейка), который имеет два входа и два выхода. Входы триггера реагируют на низкий логический уровень: вход R – сброс (англ. Reset – сброс) и вход S – установка (англ. Set – установка), выходы: прямой Q (англ. Quit – выход) и инверсный –Q.

Как говорилось выше, входы триггера R и S реагируют на низкий логический уровень и сигналы на них должны поступать с некоторой разницей во времени. Опишем работу данной схемы. Когда на обоих входах триггера присутствует низкий логический уровень, то это никак не отразится на уровне напряжения на выходах. Когда на вход S поступит сигнал лог. 1, то на выходах Q будет лог. 0, а на –Q – лог. 1. Если теперь на вход R триггера поступит лог. 1, то выходные сигналы не изменятся. И наконец если изменить уровень сигнала на входе S с высокого на низкий уровень, то на выходе триггера Q будет лог. 1, а на –Q – лог. 0. Таким образом, для данной триггерной ячейки можно составить таблицу истинности.

Таблица истинности триггерной ячейки (RS триггер).

Входы Выходы
R S Q -Q
Не определено
1 1
1 1 Без изменений
1 1

Схемы с такой таблицей истинности называются RS триггерами. RS триггеры служат основой для многих динамических устройств: делители частоты, счётчики, регистры. Кроме вышеописанного RS триггера существует ещё несколько типов триггеров, которые отличаются методом управления, входными и выходными сигналами. Все современные триггеры объединены в серии цифровых микросхем:

  • RS триггеры – самый простой и редко используемый триггер, имеет обозначение ТР;
  • JK триггер – имеет сложное управление, обозначение ТВ;
  • D триггер – самый распространённый и имеет сложность среднюю, обозначение ТМ;

Что такое RS триггер

RS триггер можно рассматривать как однобитную память, поскольку он сохраняет входной импульс даже после его прохождения. Триггеры разных типов могут быть изготовлены из логических вентилей. Наиболее используемыми являются И-НЕ и ИЛИ-НЕ. Самые применяемые – И-НЕ. Это связано с их универсальностью, то есть можно имитировать любую из других стандартных логических функций.

Схема триггера РС (Set-Reset) – одно из простейших последовательных соединений, состоящее из двух перекрестно включенных вентилей. Выход каждого из них подключен ко входу другого, что дает форму положительной обратной связи.

Триггер РС имеет два активных входа (S и R) и два выхода (Q и Q̃ (not-Q)). Для синхронных схем добавляется вход С с тактовым сигналом.

У RS триггера принцип работы можно описать так:

  1. Состояние установки. Пусть вход одного вентиля R находится на логическом уровне 0, а вход другого S – на уровне 1. На выходе первого элемента Q̃ получается 1 (логический принцип И-НЕ). Этот выход одновременно подается на вход первого вентиля. В результате оба его входа соответствуют 1, а на выходе Q – 0. Если вход R меняется на 1, а S остается на прежнем уровне 1, то первый вентиль получает по обратной связи еще 0 на вход, и выход Q̃ будет неизменным – 1. Триггерная цепь заперта или установлена с Q, равным 0, и Q̃, равным 1, вне зависимости от подаваемого сигнала;
  2. Состояние сброса. Является альтернативным неизменным состоянием. Изначальные его условия: логический уровень сигнала на входе первого вентиля R – 1, а второго S – 0. Выход Q̃ имеет значение 0, Q соответствует 1. Так как у второго вентиля один из входов имеет логику 0, то на выходе Q – 1 (по логическому принципу И-НЕ). Здесь опять работает обратная связь, и первый вентиль получает на вход 1. Две единицы на входе обеспечивают 0 на выходе Q̃. При изменении заданной логики входа S на 1 и сохранении того же сигнала 1 на входе R на выходе Q̃ остается 0, а на Q – 1. То есть фиксируется новое состояние, не зависящее от смен входного значения.

Важно! На вход S (set) должен быть подан сигнал, который переводит схему в состояние, когда Q равно единице. Сигнал на входе R (reset) производит сброс схемы в нулевое состояние.

  • 1 RS — триггер
    • 1.1 Классическая реализация RS-триггера
    • 1.2 Временные диаграммы RS-триггера
    • 1.3 Другая реализация RS-триггера
  • 2 Синхронный RS-триггер
    • 2.1 Схема синхронного RS-триггера
  • 3 Синхронный JK-триггер
    • 3.1 Схема JK-триггера
    • 3.2 Конкретная реализация синхронного JK-триггера
  • 4 D-триггер
  • 5 Т-триггер
  • 6 Двухступенчатые триггеры
    • 6.1 Двухступенчатый синхронный RS-триггер
    • 6.2 Двухступенчатый D-триггер
    • 6.3 Двухступенчатый JK-триггер
  • 7 Универсальные триггеры
    • 7.1 Универсальный JK-триггер
  • 8 Ступенчатый D-триггер

Первым будет рассмотрен RS-триггер. Его условное обозначение приведено на рисунке 1.

S (SET) — вход установки значения 1. R (RESET) — вход сброса (установки значения 0). Входы прямые — активны при подачи логической единицы, неактивны при подаче логического нуля.

Логика работы RS-триггера:

  • S=0 R=0 — режим хранения информации (выходы не меняются, Q(t+1)=Q(t) )
  • S=1 R=1 — режим записи единицы ( Q(t+1)=1 )
  • S=0 R=1 — режим записи нуля ( Q(t+1)=0 )
  • S=1 R=1 — запрещенная комбинация (оба входа активны). Значение Q зависит от реализации триггера (не определено в общем случае). Значение перехода из запрещенного состояния Q(t) в Q(t+1) тоже зависит от реализации.

RS — триггер с инверсными входами (рис. 2) работает аналогично, только входы становятся активны при подаче логического нуля, а неактивны при подаче единицы.

Классическая реализация RS-триггера

Классической является реализация RS-триггера на элементах «ИЛИ-НЕ» (рис 3.):

S R Q(t) Q(t+1) no Q(t+1) Описание
1 режим хранения нуля
1 1 режим хранения единицы
1 1 установка в состояние 1
1 1 1 режим хранения 1
1 1 режим хранения нуля
1 1 1 сброс в ноль
1 1 запрещено
1 1 1 запрещено

Временные диаграммы RS-триггера

Будем считать, что в триггере записано значение «0», попробуем записать «1» (рис. 4).

Если объединить входы R и S триггера, то выход будет определяться тем, какой из элементов сработает раньше («генератор случайных чисел»). Схема и временные диаграммы такого подключения приведены на рисунке 5.

Асинхронный RS-триггер

Обратимся к асинхронному RS-триггеру, имеющему условное графическое обозначение, приведенное на рис. 3.54.

Триггер имеет два информационных входа: S (от англ. set) и R (от англ. reset).

Закон функционирования триггеров удобно описывать таблицей переходов, которую иногда также называют таблицей истинности (рис. 3.55). Через S’, R’, Q’ обозначены соответствующие логические сигналы, имеющие место в некоторый момент времени t, а через Qt + 1 — выходной сигнал в следующий момент времени t+1. Комбинацию входных сигналов S’ = l, R’ =1 часто называют запрещенной, так как после нее триггер оказывается в состоянии (1 или 0), предсказать которое заранее невозможно. Подобных ситуаций нужно избегать.

Читайте также  Лучшие распиловочные станки

Рассматриваемый триггер может быть реализован на двух элементах ИЛИ-НЕ (рис. 3.56).

Необходимо убедиться, что эта схема функционирует в полном соответствии с приведенной выше таблицей переходов.

Микросхема К564ТР2 содержит 4 асинхронных RS-триггера и один управляющий вход (рис. 3.57).
При подаче на вход V низкого уровня выходы триггеров отключаются от выводов микросхем и переходят в третье так называемое высокоимпедансное состояние. При подаче на вход V логического сигнала «1» триггеры работают в соответствии с вышеприведенной таблицей переходов.

В асинхронном RS-триггере на элементах И-НЕ переключение производится логическим «0», подаваемым на вход R или S, т. е. реализуется обратная рассмотренной ранее таблица переходов (рис. 3.58). Запрещенная комбинация соответствует логическим «0» на обоих входах.

Триггер типа MS

Рассмотрим принцип построения двухступенчатого триггера, который называют также триггером типа MS (от англ. master, slave, что переводят обычно как «ведущий» и «ведомый»). Его упрощенная структурная схема приведена на рис. 3.60. В схеме имеются два одноступенчатых триггера (ведущий М и ведомый S) и два электронных ключа (Кл1 и Кл2).
Временная диаграмма сигнала синхронизации, поясняющая работу триггера, приведена на рис. 3.61.
Рассмотрим ряд временных интервалов указанной диаграммы:

t

Обратимся к динамическим триггерам. Для них характерно блокирование информационных входов в тот момент, когда полученная информация передается на выход. Нужно отметить, что в отношении реакции на входные сигналы динамический триггер, срабатывающий при изменении сигнала на входе С от 1 к 0, подобен рассмотренному двухступенчатому триггеру, хотя они отличаются внутренним устройством.


Для прямого динамического С-входа используют обозначения, приведенные на рис. 3.63, а, а для инверсного динамического С-входа, используют обозначения, приведенные на рис. 3.63, б.

Синхронный RS-триггер

Схема асинхронного RS-триггера проста, но за это приходится заплатить целым рядом недостатков: наличие запрещенного состояния, установка 0 и 1 по отдельным линиям отсутствие синхронизации, низкая помехоустойчивость. Эти недостатки частично устраняются в синхронном RS-триггере, который представляет собой асинхронный RS-триггер к которому добавлена схема синхронизации.

В целом работа данного триггера аналогична, с той поправкой, что при наличии на входе синхронизации низкого логического уровня триггер хранит предыдущее состояние, не реагируя на сигналы по входным линиям, т.е. в этот момент он как минимум гораздо более помехоустойчив.

Для использования триггеров в реальных счетных устройствах, необходимо иметь возможность дополнительного управления их состояниями — предустановки, обнуления, активации с помощью счетного тактового импульса. Что бы осуществить эту операцию в схему счетного триггера добавляется еще три входа. PRESET(PR) — восстанавливает на выходе триггера состояние 1, а СLEAR(CL) — состояние 0. С помощью тактового входа Т осуществляется общая синхронизация триггера, относительно других элементов схемы счетного устройства. Импульс поступающий на счетный вход D меняет состояние триггера, только при наличии 1 на тактовом входе.

Триггер Шмитта на логических элементах

Триггер Шмитта — это специфический вид триггера, имеющего один вход и один выход. Такой триггер Еще называют нессиметричным . В триггере Шмитта переход из одного устойчивого состояния в другое осуществляется при определенных уровнях входного напряжения, называемых пороговыми уровнями . Триггер Шмитта изображен ниже.

Если на вход триггера Шмидта подавать нарастающее напряжение (нижний график), то при некотором уровне U п1 в момент t 1 напряжение на выходе скачком переходит из состояния 0 в состояние 1. Если уменьшать напряжение на входе до некоторого напряжения U п2 в момент t 2 напряжение на выходе скачком переходит из состояния 1 в состояние 0. Явление несовпадения уровней U п1 и U п2 называется гистерезисом . Соответственно, передаточная характеристика триггера Шмитта обладает гистерезисным характером. Триггер Шмитта, в отличие от других триггеров, не обладает памятью и используется для формирования прямоугольных импульсов из напряжения произвольной формы.