Что такое напряжение прикосновения и от чего зависит его величина

Что такое напряжение прикосновения и от чего зависит его величина

Когда человек или животное касается своим телом оголенных токоведущих частей, корпуса прибора, который почему-то оказался под потенциалом, кабеля с поврежденной изоляцией и т.п, а сам, при этом стоит на земле – то разность потенциалов между точкой касания и землей называется напряжением прикосновения.

Иначе говоря, это то напряжение, под которым находятся две оголенные проводящие части не соединенные между собой.

Условия возникновения таковы — корпуса электроприборов обычно заземлены, но повреждения изоляции электрооборудования внутри этих корпусов вызывает появление напряжения прикосновения, когда вы возьметесь рукой за металлическую часть корпуса и связанных с ним металлических частей.

Определение понятия

Когда человек или животное касается своим телом оголенных токоведущих частей, корпуса прибора, который почему-то оказался под потенциалом, кабеля с поврежденной изоляцией и т.п, а сам, при этом стоит на земле – то разность потенциалов между точкой касания и землей называется напряжением прикосновения.

Иначе говоря, это то напряжение, под которым находятся две оголенные проводящие части не соединенные между собой.

Условия возникновения таковы — корпуса электроприборов обычно заземлены, но повреждения изоляции электрооборудования внутри этих корпусов вызывает появление напряжения прикосновения, когда вы возьметесь рукой за металлическую часть корпуса и связанных с ним металлических частей.

Измерение

Для измерения значений потенциалов используются стандартные измерительно-контрольные приборы: амперметр и вольтметр. Оценке подлежит возможное место касания человека с проводником, также измеряются значения на имитации живого организма – металлической пластине с подключённым резистором. Площадь пластины – 625 см2, резистор имитирует организм человека, его сопротивление должно быть эквивалентно сопротивлению тела человека. Для создания тока к проводнику подключается трансформатор, создающий ток критических величин, максимально возможный на данном участке энергосистемы. Так рассчитываются параметры на опасных участках.

Важно! При измерении нельзя нарушать правила техники безопасности, так как используются критические величины тока, опасные для жизни и здоровья человека.

ПРАКТИКА МОЛНИЕЗАЩИТЫ
Напряжения прикосновения и шага при ударе молнии

Напряжения прикосновения и шаговое напряжение – опасные параметры, которые не без оснований упоминаются в практических руководствах по молниезащите любой страны. Действительно, прямой удар молнии в человека – явление исключительно редкое. Одиночный человек на открытой местности в средней полосе России будет поражен молнией не чаще, чем 1 раз за 3000 лет, а многочисленные случаи гибели группы людей на футбольном поле, пляже или у автобусной остановки – результат действия шаговых напряжений. Их природа хорошо известна и связана с растеканием в земле тока молнии.

Шаговое напряжение

Нельзя сказать, что грунт – очень хороший проводник. Его удельное сопротивление примерно в 1 000 000 000 раз выше удельного сопротивления стали. Когда ток молнии растекается в грунте, там в полном соответствии с законом Ома создается высокое напряжение. Наибольшим потенциалом обладает место ввода тока молнии. По мере удаления от него потенциал падает, но далеко не так быстро, как хотелось бы.

Диаграмма (рис. 1) демонстрирует, как это происходит в рядовом подмосковном суглинке с удельным сопротивлением 100 Ом·м при ударе молнии с током 100 кА. Даже на расстоянии 20 м от места удара потенциал поднялся до 100 кВ. Человек, который там находится, касается ногами земли в точках с разными потенциалами. В результате на длине шага возникает напряжение Uшаг, равное разности потенциалов между точками касания. Через тело протекает ток, который может быть опасным для жизни.

Рис.1. Растекание тока молнии в грунте (ρ = 100 Ом·м)

График зависимости величины шагового напряжения от расстояния до точки удара молнии (рис. 2) показывает, что значение Uшаг снижается не слишком сильно. Во всяком случае молния все еще опасна на расстоянии 20–30 м, где Uшаг измеряется десятками киловольт. Теперь становится понятным массовое поражение игроков на футбольном поле или пассажиров на автобусной остановке.

Рис. 2. Зависимость Uшаг от расстояния до точки удара молнии

Напряжение прикосновения

К опасному воздействию высокого напряжения может привести любой контакт человека с точками разного потенциала. Например, можно стоять на земле и прикоснуться к какой-либо металлоконструкции здания, когда в него ударила молния. Чаще всего речь идет о токоотводе, который отводит к заземляющему устройству ток молнии. Здесь к разности потенциалов в грунте добавляется еще ЭДС магнитной индукции, наводящаяся в контуре из токоотвода, тела человека, его руки и поверхности земли. Величина этой ЭДС прямо пропорциональна площади контура (обычно s

1 м 2 ) и скорости роста тока молнии в токоотводе.

По существующим нормам приходится ориентироваться на максимальную скорость AI = 2 · 10 9 А/с и учитывать, что токоотводов должно быть как минимум два, а потому в каждом течет только половина тока. Для оценки в случае двух токоотводов пригодна формула:

где lр – расстояние от человека до токоотвода (фактически – длина прикоснувшейся к нему руки), rт – радиус токоотвода.

Если, например, lр = 0,7 м, а rт = 0,01 м, вычисления дают 130 000 В = 130 кВ. Хотя время действия такого напряжения вряд ли превысит микросекунду, сотня киловольт представляется вполне значимой величиной, к которой нужно отнестись с должным уважением.

Формула позволяет провести оценку и при большем числе токоотводов. Для этого их фактическое число надо подставить в знаменатель формулы вместо двойки. Сразу видно, что увеличение числа токоотводов – эффективное средство снижения напряжения прикосновения. Этим широко пользуются проектировщики.

Проектировщики также стараются разместить токоотводы в труднодоступных местах, что на практике далеко не всегда удается. В этом случае безопаснее применять изолированные токоотводы. Например, фирма Dehn+Söhne предлагает токоотводы с изоляцией на 100 кВ при импульсе 1,2/50 мкс. Такой токоотвод в каталоге компании называется CUI-проводник и представлен в двух исполнениях – длиной 3,5 и 5 метров (артикулы 830208 и 830218 соответственно).

CUI-проводник (фото 1) представляет собой медный проводник сечением 50 мм 2 , покрытый изоляцией из сетчатого полиэтилена (PEX) толщиной примерно 6 мм. Сверху дополнительно нанесен тонкий слой полиэтилена (PE) для защиты от воздействия окружающей среды.

Фото 1. CUI-проводник фирмы Dehn+Söhne

CUI-проводник подключается при помощи клеммы к спускающемуся токоотводу и вертикально по кратчайшему расстоянию соединяется с системой заземления (фото 2).

Фото 2. Установка CUI-проводника

Положив руку на изолированный токоотвод, человек мало чем рискует непосредственно. Полимерная изоляция надежно защищает его от контакта с внутренним металлическим проводником. ЭДС магнитной индукции не в состоянии ее пробить.

Тем не менее опасность существует. Ее создает скользящий разряд по наружной поверхности изоляции. Он не требует большого напряжения для своего развития и может протянуться на метры от точки подключения к неизолированному токоотводу до кисти руки человека, коснувшейся изоляции. Особенно сильно этот эффект проявляется при дожде, когда вся поверхность изоляции мокрая. Специальный дополнительный экран в верхней части изолированного токоотвода эффективно устраняет такую возможность, обеспечивая сухую зону (фото 3). Это подтверждено испытаниями при воздействии капель дождя в соответствии с МЭК 60060-1 (фото 4).

Читайте также  Установка металлической двери в деревянном доме

Фото 3. Дополнительный экран токоотвода

Фото 4. Испытания токоотвода

Нормы и решения

Жаль, что поверхность земли нельзя покрыть столь же прочной изоляционной пленкой, как и токоотвод. Тогда проблема шаговых напряжений была бы решена кардинально.

Отечественный норматив СО-153-34.21.122-2003 рекомендует прокладывать заземлитель по внешнему периметру здания на глубине около 0,5 м. Компьютерный расчет позволяет проследить, как меняется величина шагового напряжения по мере удаления от дома с размерами в плане, скажем, 30 на 30 метров. Удельное сопротивление грунта принято равным 500 Ом·м (песок); расчетный ток 100 кА соответствует III уровню молниезащиты.

В этом случае непосредственно у стены человек рискует попасть под напряжение почти 70 кВ. Дальше от дома напряжение меньше, но даже на расстоянии 20 м оно все еще превышает 5 кВ.

Действующий норматив РД 34.21.122-87 для защиты от шаговых напряжений рекомендует укладывать асфальтовое покрытие в местах частого нахождения людей. Толстый слой асфальта выполнит ту же роль, что и изоляция токоотвода. Такое решение возможно у общественных зданий, но вряд ли найдется хозяин, готовый устроить асфальтовую пустыню у своего коттеджа.

Не согласится он и на превращение практически всего приусадебного участка в контур заземления. Контур придется монтировать на глубине до 1 м, прокладывая горизонтальные металлические полосы с шагом до 2 м. Только тогда для рассматриваемого случая с контуром 30×30 м 2 шаговое напряжение упадет до 1,5 кВ, причем только в его центральной части. Ситуация на границе окажется значительно опаснее.

Здесь возникает закономерный вопрос о предельно допустимой величине напряжения. На него до сих пор нет четкого ответа.

Из самых общих соображений ясно, что опасность электротравмы при прочих равных условиях нарастает со временем действия напряжения. В руководстве по технике безопасности предельно допустимым считается 50 В при времени воздействия 1 с, 100 В при 0,5 с и 650 В при 0,01 с. Грозовое перенапряжение короче на 2 порядка величины, а потому допустимое значение напряжения должно быть еще выше. Но насколько? Медики и физиологи официально не предлагают конкретных значений, а без серьезных физиологических исследований электрики не в состоянии принимать обоснованные регламентные требования.

Проблема явно зашла в тупик и нуждается в неотложном решении, потому что конструкция заземляющих устройств в молниезащите должна обеспечивать не только допустимое значение сопротивления заземления при растекании токов молнии, но и безопасные напряжения прикосновения и шага. На практике это далеко не одно и то же и требует совершенно разных затрат металла на заземляющие электроды.

DEHN + SÖHNE
Представительство в России

109316, Москва, Волгоградский пр., 47, оф. 335. Тел./факс: (495) 663-35-73, 663-31-22
info@dehn-ru.com, www.dehn-ru.com

© ЗАО «Новости Электротехники»
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Зона опасности шагового напряжения

Зона растекания тока может быть в радиусе порядка 10 и более метров от места касания земли оборванного провода. Радиус зоны опасности, которая находится под напряжением, зависит от нескольких факторов.

Во-первых: расстояние от источника опасности. Чем удаленнее, тем опасность меньше.

Во-вторых: напряжение линии оборванного провода: 0,4; 1; 3; 6; 10; 35; 110; 220 кВ.

Если влажность земли, по которой будет протекать ток, будет выше нормы, то нужно принять во внимание, что в перечисленных выше случаях радиус действия увеличивается. Исходя из всех вышеперечисленных условий, особо опасной является зона, расположенная в радиусе 8-10 метров от источника.

Прямое прикосновение

Под прямым прикосновением принимается контакт человеком с частью электропроводки, которая в рабочем режиме находится под напряжением. Иначе говоря, качание человека открытых проводов, контактов, клем по которым в нормальном (не аварийном) режимах протекает электрический ток это и есть прямое прикосновение.

Различаются несколько видов прямого прикосновения

  • Касание двумя руками двух различных фаз;
  • Одновременное касание фазы и нуля;
  • Касание только одного провода в 2-х проводной сети.

При касании двух фаз тело человека оказывается включенным в полное линейное напряжение сети. Это самое опасное из всех прикосновений. При нем ток протекает по жизненно важным органам. Например, при касании двумя руками, то ток протекает через сердце и легкие.

Ток через тело человека при двойном прикосновении к фазным проводникам практически не зависит от режима нейтрали сети. При любой нейтрали ток через тело человека определяется по простому закону Ома. Ток через тело прямо пропорционален линейному напряжению и обратно пропорционален сопротивлению человека.

Если принять во внимание сопротивление человека 1000 Ом, а напряжение сети 380 Вольт, то ток через тело человека равен 380 mA(миллиампер), что является смертельным порогом тока поражения.

Примечание: Допустимый интервал времени прохождения тока через тело человека равен 0,01 – 2сек. При этом величины токов, проходящие через тело человека, подразделяются на пять пунктов по типу последствий воздействия.

Таблица значений тока поражения и его последствий по воздействию на человека.

При прямом прикосновении к фазному и нулевому проводу и касании одного провода значение тока через тело человека снижаются, за счет увеличения сопротивления, но все равно остаются смертельно опасными для человека.

Для защиты человека от прямого прикосновения нормативными документами определены меры защиты от прямого прикосновения.

Примечание: По международному электрическому кодексу (МЭК) защита от прямого прикосновения называется базовой защитой.

Базовую защиту от прямого соприкосновения разделяют на физическую защиту от прикосновения (изоляция проводов, огорождения, выделение отдельных помещений для электроустановок) и дополнительную защиту.

Физическая защита это предупредительные меры защиты человека от поражения электрическим током. В большинстве случаях, отдельно без дополнительной защиты, ее нельзя рассматривать как надежную.

Дополнительная защита от прямого прикосновения служит для защиты человека при отсутствии или повреждении первой защиты. Для дополнительной защиты от прямого соприкосновения используется устройство защитного отключения (УЗО) с высокой чувствительностью (I≤30 mA) и минимальным временем срабатывания.

Повторюсь. Прямое прикосновение это непосредственный контакт с частями проводки, по которому протекает ток в нормальном, рабочем режиме. Прямое прикосновение это, скорее всего случайность, вызванная с невнимательностью, оплошностью. Вряд ли кто либо самостоятельно схватится за провод находящейся под напряжением.

Другое дело если прикосновение к токоведущим частям происходит не преднамеренно, а при аварийных режимах. При аварийном режиме человек не предполагает, что токопроводная конструкция оказалась под напряжением. Такое прикосновение называется косвенным, а защита от косвенного прикосновение называется защита от короткого замыкания.

Как освободить человека

Какие-либо действия можно предпринимать только в тех случаях, когда есть угроза жизни другого человека. И то, только тогда, когда вы чётко знаете что делать и уверены в своих силах. Если авария произошла в районе действия линий до 1 кВ, действуют по следующей схеме:

  • К пострадавшему передвигаются «гусиным шагом».
  • Чтобы убрать с него провод, применяют заранее приготовленную сухую деревянную жердь.
  • Эвакуируют пострадавшего, предварительно обмотав руки сухой одеждой, она сыграет роль изолятора.
Читайте также  Тисненые обои

Если авария произошла на высоковольтной линии, то спасение возможно только при наличии СИЗ(диэлектрические перчатки, галоши) или после отключения линия. Ускорить процесс можно закоротив фазы, набросив на них ветку или проволоку. Если такой возможности нет, не старайтесь рисковать, это опасно для жизни. Вход в возможную зону поражения без индивидуальных защитных средств запрещён. Лучшая помощь — вызов спасателей.

Охрана труда

  • Гигиена труда
  • ОТ в условиях опасности
  • ОТ при работе на компьютере
  • ОТ для общественного инспектора
  • ОТ в строительстве
  • ОТ на предприятии
  • ОТ в сельском хозяйстве
  • ОТ в ССО
  • ОТ в прокатном производстве
  • ОТ в машиностроении
  • ОТ на ЖД транспорте
  • ОТ в пищевой промышленности
  • СИЗ органов дыхания
  • Капитальные вложения в ОТ
  • Знаки безопасности
  • Различные материалы по ОТ
  • Книги по ОТ
  • 1 ПОДГОТОВЛЕН Московским институтом энергобезопасности и энергосбережения на основе аутентичного перевода на русский язык международного документа, указанного в пункте 4

    2 ВНЕСЕН Техническим комитетом по стандартизации ТК 337 «Электрические установки зданий»

    3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 6 сентября 2013 г. № 981-ст

    4 Настоящий стандарт идентичен международному документу МЭКГГУ 61201:2007 «Допустимые пределы напряжения прикосновения. Руководство по применению» (IEC/TS 61201:2007 «Use of conventional touch voltage limits. Application guide»)

    5 ВВЕДЕН ВПЕРВЫЕ

    Иронию применения настоящего спшшЮрто установлены в IXX’T Р 1.0 2012 (раздел 8). Пш(м>рмоция об тиснениях к настоящему сташклрту публикуется в ежегодной (по состоянию на I января текущего .гх)а/ инфорлюционнаи укагате.че •Национальные сташклрты». а олфащальный текст лпиененилл и поправок — в ежемесячной формационном указателе •Национальные стандарты». В случае пересмотра (жилены) ити отмены настоящего спландарпил соответствующее уведомление будет опубликовано в ближайшем выпуске еже.иесячно.’о информационнол» у ко (оте ля • : (см. рисунок 2 и таблицу 1).

    Чтобы предотвратить вентрикулярную фибрилляцию сердца площадь контакта не должна быть больше 80 см’

    При выборе допустимых напряжений прикосновения в соответствии с настоящим стандартом для снижения риска поражения электрическим током следует принять меры уменьшения максимально допустимой площади контакта.

    Таблица 1 — Примеры максимальных площадей контакта, соответствующих напряжению

    прикосновения переменного тока____

    Переменног о тока В

    Путь прохождения тока через тело***

    Максимальная площадь контакта для порога напряжения прикосновения* для реакции электрошока** см 2

    Максимальная площадь контакта для порога напряжения прикосновения* для мускульной реакции -см 2

    Максимальная площадь контакта для порога напряжения прикосновения*