Регулятор оборотов своими руками: подробная инструкция как сделать, схемы, чертежи и примеры изготовления (95 фото видео)

Регулятор оборотов своими руками: подробная инструкция как сделать, схемы, чертежи и примеры изготовления (95 фото + видео)

Широкое применение бытовых электроприборов и инструментов часто требует от них новых возможностей и способов применения. В электроинструментах и машинах различного рода применяются коллекторные электромоторы, скорость вращения которых необходимо регулировать, создавая различные режимы работы.

Например, при использовании болгарки скорость вращения диска рекомендуется менять при работе с материалами различной твердости и толщины.

  • Регулировка оборотов электродвигателей повышает области их применения
  • Продлить жизнь двигателя очень просто
  • Регулятор для двигателей на 220 Вольт
  • Стиральная машина – источник творчества
  • Широкие возможности техники слабых токов
  • Фото регулятора оборотов своими руками

Описание 4 схем регуляторов оборотов электродвигателя

Первая схема

На транзисторе VT1 (однопереходном) реализован генератор пилообразного напряжения (частота 150 Гц). Операционный усилитель DA1 играет роль компаратора, создающего ШИМ на базе транзистора VT2. В результате получается ШИМ регулятор оборотов двигателя.

Изменяют скорость вращения переменным резистором R5, который меняет длительность импульсов. Так как, амплитуда ШИМ импульсов постоянна и равна напряжению питания электродвигателя, то он никогда не останавливается даже при очень малой скорости вращения.

Вторая схема

Она схожа с предыдущей, но в роли задающего генератора применен операционный усилитель DA1 (К140УД7).

Этот ОУ функционирует как генератор напряжения вырабатывающий импульсы треугольной формы и имеющий частоту 500 Гц. Переменным резистором R7 выставляют частоту вращения электродвигателя.

Третья схема

Она своеобразная, построена на она на популярном таймере NE555. Задающий генератор действует с частотой 500 Гц. Ширина импульсов, а следовательно, и частоту вращения двигателя возможно изменять от 2 % до 98 %.

Слабым местом во всех вышеприведенных схемах является, то что в них нет элемента стабилизации частоты вращения при увеличении или уменьшении нагрузки на валу двигателя постоянного тока. Разрешить эту проблему можно с помощью следующей схемы:

Как и большинство похожих регуляторов, схема этого регулятора имеет задающий генератор напряжения, вырабатывающий импульсы треугольной формы, частота которых 2 кГц. Вся специфика схемы — присутствие положительной обратной связи (ПОС) сквозь элементы R12,R11,VD1,C2, DA1.4, стабилизирующей частоту вращения вала электродвигателя при увеличении или уменьшении нагрузки.

При налаживании схемы с определенным двигателем, сопротивлением R12 выбирают такую глубину ПОС, при которой еще не случаются автоколебания частоты вращения при изменении нагрузки.

Регулировка

Теперь расскажем о том, как можно регулировать обороты коллекторных двигателей. В связи с тем, что скорость вращения мотора просто зависит от величины подаваемого напряжения, то любые средства регулировки, которые способны выполнять эту функцию для этого вполне пригодны.

Перечислим несколько такого рода вариантов для примера:

  1. Лабораторный автотрансформатор (ЛАТР).
  2. Заводские платы регулировки, используемые в бытовых приборах (можно использовать в частности те, которые применяются в миксерах или в пылесосах).
  3. Кнопки, используемые в конструкции электроинструментах.
  4. Бытовые регуляторы освещения с плавным действием.

Однако, все вышеперечисленные способы имеют очень важный изъян. Вместе с уменьшением оборотов, одновременно уменьшается и мощность работы мотора. В некоторых случаях, его можно остановить даже просто рукой. В некоторых случаях, это может быть приемлемо, но большей частью, это является серьёзным препятствием.

Хорошим вариантом является выполнение регулировки оборотов посредством использования тахогенератора. Его обычно устанавливают на заводе. При отклонениях в скорости вращения мотора, через симисторы в мотор передаётся уже откорректированное электропитание, соответствующее требуемой скорости вращения. Если в эту схему встроить регулировку вращения мотора, то потери мощности здесь происходить не будет.

Как это выглядит конструктивно? Наиболее распространены реостатная регулировка вращения, и сделанная на основе использования полупроводников.

В первом случае, речь идёт о переменном сопротивлении с механической регулировкой. Она последовательно подключается к коллекторному электродвигателю. Недостатком является дополнительное выделение тепла и дополнительная трата ресурса аккумулятора. При таком способе регулировк, происходит потеря мощности вращения мотора. Является дешёвым решением. Не применяется для достаточно мощных моторов по упомянутым причинам.

Во втором случае, при использовании полупроводников, происходит управление мотором путём подачи определённых импульсов. Схема может менять длительность таких импульсов, что в свою очередь, меняет скорость вращения без потери мощности.

Тестирование ШИМ контроллера

Для тестирования контроллера будем использовать набор ячеек литиевых батарей с номинальным напряжением 80 В, которые применяются для данного электрического велосипеда. Контроллер временно подключен к аккумулятору и мотору, который прикреплен к велосипеду, чтобы приводить в движение заднее колесо. Поворачивая потенциометр по часовой стрелке, двигатель должен начать вращаться постепенно и увеличивать скорость, пропорциональную вращению ручки.

Чтобы проверить регулятор скорости на реальной нагрузке, надо смонтировать все на своем месте. Посмотреть как он держит нагрузку, вес, долгое время работы и воздействие атмосферной влажности (лучше покрыть плату лаком).

Регуляторы для ручной сверлилки плат.

Регуляторы для ручной сверлилки плат.

Регуляторы оборотов для мини_дрели

Приветствую радиолюбителей. И да не остынет ваш паяльник. В принципе в инете полно разных схем регуляторов, выбирай на свой вкус, но, чтобы вам долго не мучаться в поисках мы решили предложить вашему вниманию несколько вариантов схем в одной статье. Сразу оговоримся, описывать принцип работы каждой схемы мы не будем, вам будет предоставлена принципиальная схема регулятора, а также печатная плата к ней в формате LAY6. И так, начнем.

Первый вариант регулятора построен на микросхеме LM393AN, питание на нее подается с интегрального стабилизатора 78L08, операционник управляет полевым транзистором, нагрузкой которого является мотор ручной минидрели. Принципиальная схема:

Регулировка оборотов осуществляется потенциометром R6.
Напряжение питания 18 Вольт.

Плата LAY6 формата к схеме на LM393 выглядит так:

Фото-вид платы LAY6 формата:

Размер платы 43 х 43 мм.

Расположение выводов полевого транзистора IRF3205 показано на следующем рисунке:

Второй вариант имеет довольно широкое распространение. В его основу заложен принцип широтно-импульсного регулирования. Схема построена на микросхеме таймере NE555. Управляющие импульсы с генератора поступают на затвор полевика. В схему можно поставить транзисторы IRF510. 640. Напряжение питания 12 Вольт. Принципиальная схема:

Регулировка оборотов двигателя осуществляется переменным резистором R2.
Расположение выводов IRF510. 640 такое же как у IRF3205, картинка выше.

Печатная плата LAY6 формата к схеме на NE555 выглядит так:

Фото-вид платы LAY6 формата:

Размер платы 20 х 50 мм.

Третий вариант схемы регулятора оборотов имеет не меньшую популярность среди радиолюбителей чем ШИМ, ее отличительной особенностью является то, что регулировка скорости происходит автоматически, и зависит от нагрузки на валу моторчика. То есть, если мотор крутится на холостых оборотах, скорость его вращения минимальна. При увеличении нагрузки на валу (в момент сверления отверстия), обороты автоматически увеличиваются. В нете эту схему можно найти по запросу “Регулятор Савова”. Принципиальная схема автоматического регулятора оборотов:

После сборки необходимо сделать небольшую настройку регулятора, для этого на холостом ходу моторчика подстраивается подстроечный резистор Р1 чтобы обороты были минимальны, но так, чтобы вал вращался без рывков. Р2 служит для подстройки чувствительности регулятора к увеличению нагрузки на валу. При 12-ти Вольтовом питании ставьте электролиты на 16 Вольт, 1N4007 заменимы на подобные от 1 Ампера, светодиод любой, например АЛ307Б, LM317 можно поставить на небольшой теплоотвод, печатная плата рассчитана на установку радиатора. Резистор R6 – 2 Вт. Если моторчик вращается рывками, увеличьте немного номинал конденсатора С5.

Читайте также  Зарядка литий ионных аккумуляторов напрямую

Печатная плата автоматического регулятора оборотов показана ниже:

Фото-вид платы автоматического регулятора оборотов LAY6 формата:

Размер платы 28 х 78 мм.

Все вышеприведенные платы изготавливаются на одностороннем фольгированном стеклотекстолите.

Скачать принципиальные схемы регуляторов оборотов для ручной мини-дрели, а также печатные платы в формате LAY6 моожно по прямой ссылке с нашего сайта, которая появится после клика по любой строке рекламного блока ниже кроме строки “Оплаченная реклама”. Размер файла – 0,47 Mb.

Как выбрать?

Конкретная модель регулятора оборотов должна подбираться в соответствии с типом подключаемой электрической машины – коллекторный двигатель, трехфазный или однофазный электродвигатель. В соответствии с чем и подбирается определенный преобразователь частоты вращения.

Помимо этого для регулятора оборотов необходимо выбрать:

  • Тип управления – выделяют два способа: скалярный и векторный. Первый из них привязывается к нагрузке на валу и является более простым, но менее надежным. Второй отстраивается по обратной связи от величины магнитного потока и выступает полной противоположностью первого.
  • Мощность – должна выбираться не менее или даже больше, чем номинал подключаемого электродвигателя на максимальных оборотах, желательно обеспечивать запас, особенно для электронных регуляторов.
  • Номинальное напряжение – выбирается в соответствии с величиной разности потенциалов для обмоток асинхронного или коллекторного электродвигателя. Если вы подключаете к заводскому или самодельному регулятору одну электрическую машину, будет достаточно именно такого номинала, если их несколько, частотный регулятор должен иметь широкий диапазон по напряжению.
  • Диапазон частот вращения – подбирается в соответствии с конкретным типом оборудования. К примеру, для вращения вентилятора достаточно от 500 до 1000 об/мин, а вот станку может потребоваться до 3000 об/мин.
  • Габаритные размеры и вес – выбирайте таким образом, чтобы они соответствовали конструкции оборудования, не мешали работе электродвигателя. Если под регулятор оборотов будет использоваться соответствующая ниша или разъем, то размеры подбираются в соответствии с величиной свободного пространства.

Технические параметры регулятора оборотов электродвигателя:

  • напряжение питания: 230 В переменного тока
  • диапазон регулировки: 5..99%
  • напряжение нагрузки: 230 В / 12 А (2,5 кВт с радиатором)
  • максимальная мощность без радиатора 300 Вт
  • низкий уровень шума
  • стабилизация оборотов
  • мягкий пуск
  • размер платы 50×60 мм

Принципиальная электросхема

Схема модуля системы регулирования основана на генераторе ШИМ импульсов и симисторе управления мотором — традиционная схемотехника для аналогичных устройств.

Элементы D1, R1 ограничивают величины напряжения питания до безопасных значений для питания микросхемы генератора.

Конденсатор C1 отвечает за фильтрацию напряжения питания.

Элементы R3, R5 и P1 является делителем напряжения с возможностью его регулировки, который используется для задания величины мощности, подаваемой в нагрузку.

Благодаря использованию резистора R2, непосредственно входящего в цепь поступления на м/с фазы, внутренние блоки синхронизированы с симистором ВТ139.

На рисунке ниже показано месторасположение элементов на печатной плате. Во время монтажа и пуска следует обратить внимание на обеспечение условий безопасной работы (регулятор имеет питание от сети 220В и его элементы непосредственно подключены к фазе).

Подобный регулятор оборотов двигателя можно купить в Китае с бесплатной доставкой всего за 1,5$ (120 руб.) — Ссылка

Увеличение мощности регулятора

В испытательном варианте был использован симистор BT138/800 с предельным током 12 А, что позволяет управление нагрузкой более 2 кВт. В случае если нужно управление большими токами нагрузки — рекомендуем тиристор устанавливать за пределами платы на большом радиаторе. Также следует помнить о правильном выборе предохранителя FUSE в зависимости от нагрузки.

Также кроме управления оборотами электродвигателей, возможно без каких-либо переделок применить схему для регулирования яркости ламп освещения.

Регулятор оборотов

Понадобился регулятор оборотов коллекторного двигателя. Регулятор оборотов на Ардуино с поддержанием оборотов. Двигатель от стиральной машинки-автомата.

В схеме были сделаны небольшие изменения. Кое что выкинул. Некоторые компоненты заменены другими. Были добавлены 2 аналоговых входа, на них можно повесить датчик температуры и следить за температурой двигателя, и радиатора на котором сидит симистор управляющий двигателем.

Если вы выполняете кратковременные работы, то датчик температуры и не нужен. Ну а если двигатель будет много работать, то неплохо с помощью датчика, Ардуино следило за температурой, и при перегреве отключало двигатель пока тот не остынет.

На этом двигателе уже присутствует тахогенератор, но в моем случае он не работает — вышел из строя. Вместо тахогенератора буду устанавливать датчик холла. Выкидываем катушку нерабочего тахогенератора, оставляем только магнит на валу. Устанавливаю датчик холла на электродвигатель.

Схема регулятора оборотов будет содержать в себе:

  • Ардуино Нано
  • Блок настроек, и управления оборотами
  • Силовая часть
  • Датчика скорости
  • Защита (реле)
  • Дополнительные входы и выходы

Ардуино Нано будет контролировать и управлять силовой частью

  • А0 — регулировка оборотов двигателя
  • А1 — настройка минимальных оборотов двигателя
  • А2 — настройка максимальных оборотов двигателя
  • А3 — выход управления симистором
  • А4 — дополнительный аналоговый вход (не задействован)
  • А5 — выход управления реле
  • А6 — дополнительный аналоговый вход (не задействован)
  • А7 — разгон или плавный старт
  • D2 — сигнал перехода через ноль
  • D4 — дополнительный выход
  • D6, D7 — тахогенератор
  • D8 — датчик холла

Блок настроек, и управления оборотами

Силовая часть будет управлять двигателем. Разъем Р1 — для подключении к сети 220В. Р3 — для установки перемычки в зависимости от блока питания.

При установке блока питания с выходным напряжением 5 вольт, на разъеме Р3 нужно установить перемычку на контакты 2 и 3. При выходном напряжении блока питания 7-12 вольт перемычку устанавливаем на контакты 1 и 2.

Не забывайте, при выборе блока питания нужно учитывать, что реле питается выходным напряжением с блока питания. Поэтому выбирайте блок питания и реле на одно напряжение.

На выводы 220V0 И 220V1, подается сетевое напряжение 220 Вольт.

Схема будет питаться импульсным блоком питания с выходным напряжением 5 вольт. Импульсный блок питания, возьмём уже готовый. Так же схему можно питать от 7 до 12 вольт. На плате есть перемычка переключения напряжения 5/12v. Так же можно питать схему и зарядным от телефона, только проверьте выходное напряжение, там не должно быть выше 5 вольт.

При установки перемычки на 5 вольт напряжение поступает напрямую на шину +5 вольт. Реле надо будет установить на 5 вольт.

При установки перемычки на 12 вольт напряжение поступает на вход Ардуино Vin. В этом случае можно питать схему напряжением 7-12 вольт. но и реле должно быть на такое напряжение, какое выходит с блока питания.

Датчик скорости в двух исполнения. На тахогенераторе или на датчике холла.

Схема разрабатывалась так, что бы обороты можно было считывать с тахогенератора, уже установленные на двигателях машинок-автоматов. Разъем Р4 служит для подключения тахогенератора.

А так же при отсутствии или неисправности тахогенератора можно заменить на датчик холла.

Реле служит защитой от пробоя симистора. Когда симистор пробивает, двигатель будет выходить на максимальные обороты, и это очень опасно . А что бы этого не случилось, контроллер отслеживает частоту вращения двигателя, и при превышении установленных оборотов реле отключает двигатель. Как обороты упадут ниже нормы, реле включится. Разъем Р7 — для подключения коллекторного электродвигателя.

Читайте также  Регулятор оборотов асинхронного двигателя 220в своими руками

Дополнительные входы и выходы

Иногда к устройству охота еще что нибудь прикрутить для удобства. Здесь добавлен дополнительный выход, он сейчас на плате указан как светодиод LED1. этот выход можно использовать под свои нужды. Можно пустить этот выход для управления вентилятором охлаждения двигателя и тд.

Еще есть два дополнительных аналоговых входа, которые тоже можно задействовать как писал выше, например контролировать температуру двигателя и симистора.

Верхний слой печатной платы

В конце статьи находится архив со всеми файлами для повторения данного проекта

Настройка регулятора

Настройка не сложная, поэтапная, так же можно протестировать все узлы регулятора на правильную работу.

Внешний вид и расположение элементов.

  1. Напряжение питания ≈220 В.
  2. Нагрузка, коллекторный двигатель. Мвксимальная нагрузка 2.2 кВт
  3. Светодиод индикации перегрузки.
  4. Регулировка компенсации нагрузки.
  5. Регулировка перегрузки.
  6. Переменный резистор регулировки оборотов двигателя.
  7. Регулировка пределов регулировки скорости.
  8. Перемычка для установки режима работы устройства.
  9. Шунт R6, измерителя тока.

Данный регулятор продается без шунта и переменного резистора , под самостоятельную установку пользователем этих элементов, в случае если у вас нет желания самостоятельно устанавливать шунт и переменный резистор, за вас это могу сделать я. Это дополнительная услуга и ее стоимость 250 рублей, в стоимость входит, переменный резистор, подводящий к нему провод(резистору), и шунт изготовленный из нихрома 0.8. Монтируемый шунт, выбирается из таблицы расчета под ваш двигатель.(смотрите таблицу в конце страницы), для этого необходимо будет знать мощность вашего двигателя.

Обращаю ваше внимание, что я только смонтирую (впаяю) эти детали, доведя регулятор до полностью работоспособного состояния, но вам все равно придется его настраивать, по месту, при помощи подстроечных резисторов. Если вы хотите заказать эту услугу, заказывайте регулятор как обычно, с помощью формы заказа, а в комментариях (дополнительня информация) указывайте, что хотите заказать устройство с шунтом, указав при этом мощность вашего двигателя. Соответственно данный регулятор вам обойдется в 1000 рублей (сам регулятор 750 рублей + выше описанная услуга 250 рублей)

Регулятор скорости двигателя на u2010b by Вячеслав Потоцкий